Abstract
This paper presents a hybrid Support Vector Machine (SVM) and Particle Swarm Optimization (PSO) model for predicting alpha particles emitting contamination on the internal surfaces of decommissioned channels. Six measuring parameters (channel diameter, channel length, distance to radioactive source, radioactive strength, wind speed and flux) and one ionizing value have been obtained via experiments. These parameters show complex linear and nonlinear relationships to measuring results. The model used PSO to optimize SVM parameters. The comparison of computational results of the hybrid approach with normal BP networks confirms its clear advantage for dealing with this complex nonlinear prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
MacArthur, D.W., Allander, K.S., Bounds, J.A., Butterfield, K.B.: Small Long-Range Alpha Detector(LRAD) with Computer Readout. Los Alamos National Laboratory publication LA- 12199-MS (1991)
MacArthur, D.W., Allander, K.S.: Long-Range Alpha Detectors. Los Alamos National Laboratory publication LA-12073-MS (1991)
MacArthur, D.W.: Long-range alpha detector (LRAD), LA-UR-91-3398 (1991)
MacArthur, D.W.: Long-range alpha detector for contamination monitoring, LA-UR-91-3396 (1991)
Bolton, R.D.: Radon Monitoring Using Long-Range Alpha Detector-Based Technology, LA-UR-94-3637 (1994)
Cheng, Y., Tuo, X.G., Huang, L.M., Li, Z., Yang, J.B., Zhou, C.W., Song, Q.Q.: Measuring energy loss of alpha particles in different vacuum conditions. Nuclear and Techniques 22 (2011)
Rawool-Sullivan, M.W., Allander, K.S., Bounds, J.A., Koster, J.E., MacArthur, D.W., Sprouse, L.L., Stout, D., Vaccarella, J.A., Vu, T.Q.: Field study of alpha characterization of a D&D site using long-range alpha detector. LA-UR-94-3632 (1994)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press (2000)
Guo, X.C., Yang, J.H., Wu, C.G., Wang, C.Y., Liang, Y.C.: A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71, 3211–3215 (2008)
Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46(209), 131–159
Youn, E., Koenig, L., Jeong, M.K., Baek, S.H.: Support vector-based feature selection using Fisher’s linear discriminant and Support Vector Machine. Expert Systems with Applications 37, 6148–6156 (2010)
Wang, H., He, Z.: A Short-term load forecasting immune support vector machines. Power System Technology 23, 12–15 (2004)
Pourbasheer, E., Riahi, S., Ganjali, M.R., Norouzi, P.: Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. European Journal of Medicinal Chemistry 44, 5023–5028 (2009)
Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)
Rousseau, R.M.: Corrections for matrix effects in X-ray fluorescence analysis—A tutorial. Spectrochimica Acta Part B: Atomic Spectroscopy 61, 759–777 (2006)
Wu, J.S., Liu, M.Z., Jin, L.: A Hybrid Support Vector Regression Approach for Rainfall Forecasting Using Particle Swarm Optimization and Projection Pursuit Technology. International Journal of Computational Intelligence and Applications 9(2), 87–104 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, M., Tuo, X., Ren, J., Li, Z., Wang, L., Yang, J. (2012). A PSO-SVM Based Model for Alpha Particle Activity Prediction Inside Decommissioned Channels. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds) Advances in Neural Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer Science, vol 7367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31346-2_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-31346-2_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31345-5
Online ISBN: 978-3-642-31346-2
eBook Packages: Computer ScienceComputer Science (R0)