Nothing Special   »   [go: up one dir, main page]

Skip to main content

A PSO-SVM Based Model for Alpha Particle Activity Prediction Inside Decommissioned Channels

  • Conference paper
Advances in Neural Networks – ISNN 2012 (ISNN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7367))

Included in the following conference series:

  • 2652 Accesses

Abstract

This paper presents a hybrid Support Vector Machine (SVM) and Particle Swarm Optimization (PSO) model for predicting alpha particles emitting contamination on the internal surfaces of decommissioned channels. Six measuring parameters (channel diameter, channel length, distance to radioactive source, radioactive strength, wind speed and flux) and one ionizing value have been obtained via experiments. These parameters show complex linear and nonlinear relationships to measuring results. The model used PSO to optimize SVM parameters. The comparison of computational results of the hybrid approach with normal BP networks confirms its clear advantage for dealing with this complex nonlinear prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. MacArthur, D.W., Allander, K.S., Bounds, J.A., Butterfield, K.B.: Small Long-Range Alpha Detector(LRAD) with Computer Readout. Los Alamos National Laboratory publication LA- 12199-MS (1991)

    Google Scholar 

  2. MacArthur, D.W., Allander, K.S.: Long-Range Alpha Detectors. Los Alamos National Laboratory publication LA-12073-MS (1991)

    Google Scholar 

  3. MacArthur, D.W.: Long-range alpha detector (LRAD), LA-UR-91-3398 (1991)

    Google Scholar 

  4. MacArthur, D.W.: Long-range alpha detector for contamination monitoring, LA-UR-91-3396 (1991)

    Google Scholar 

  5. Bolton, R.D.: Radon Monitoring Using Long-Range Alpha Detector-Based Technology, LA-UR-94-3637 (1994)

    Google Scholar 

  6. Cheng, Y., Tuo, X.G., Huang, L.M., Li, Z., Yang, J.B., Zhou, C.W., Song, Q.Q.: Measuring energy loss of alpha particles in different vacuum conditions. Nuclear and Techniques 22 (2011)

    Google Scholar 

  7. Rawool-Sullivan, M.W., Allander, K.S., Bounds, J.A., Koster, J.E., MacArthur, D.W., Sprouse, L.L., Stout, D., Vaccarella, J.A., Vu, T.Q.: Field study of alpha characterization of a D&D site using long-range alpha detector. LA-UR-94-3632 (1994)

    Google Scholar 

  8. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press (2000)

    Google Scholar 

  9. Guo, X.C., Yang, J.H., Wu, C.G., Wang, C.Y., Liang, Y.C.: A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71, 3211–3215 (2008)

    Article  Google Scholar 

  10. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46(209), 131–159

    Google Scholar 

  11. Youn, E., Koenig, L., Jeong, M.K., Baek, S.H.: Support vector-based feature selection using Fisher’s linear discriminant and Support Vector Machine. Expert Systems with Applications 37, 6148–6156 (2010)

    Article  Google Scholar 

  12. Wang, H., He, Z.: A Short-term load forecasting immune support vector machines. Power System Technology 23, 12–15 (2004)

    Google Scholar 

  13. Pourbasheer, E., Riahi, S., Ganjali, M.R., Norouzi, P.: Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. European Journal of Medicinal Chemistry 44, 5023–5028 (2009)

    Article  Google Scholar 

  14. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

  15. Rousseau, R.M.: Corrections for matrix effects in X-ray fluorescence analysis—A tutorial. Spectrochimica Acta Part B: Atomic Spectroscopy 61, 759–777 (2006)

    Article  Google Scholar 

  16. Wu, J.S., Liu, M.Z., Jin, L.: A Hybrid Support Vector Regression Approach for Rainfall Forecasting Using Particle Swarm Optimization and Projection Pursuit Technology. International Journal of Computational Intelligence and Applications 9(2), 87–104 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, M., Tuo, X., Ren, J., Li, Z., Wang, L., Yang, J. (2012). A PSO-SVM Based Model for Alpha Particle Activity Prediction Inside Decommissioned Channels. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds) Advances in Neural Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer Science, vol 7367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31346-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31346-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31345-5

  • Online ISBN: 978-3-642-31346-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics