Nothing Special   »   [go: up one dir, main page]

Skip to main content

Magnified Gradient Function to Improve First-Order Gradient-Based Learning Algorithms

  • Conference paper
Advances in Neural Networks – ISNN 2012 (ISNN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7367))

Included in the following conference series:

Abstract

In this paper, we propose a new approach to improve the performance of existing first-order gradient-based fast learning algorithms in terms of speed and global convergence capability. The idea is to magnify the gradient terms of the activation function so that fast learning speed and global convergence can be achieved. The approach can be applied to existing gradient-based algorithms. Simulation results show that this approach can significantly speed up the convergence rate and increase the global convergence capability of existing popular first-order gradient-based fast learning algorithms for multi-layer feed-forward neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moller, M.F.: A scaled conjugated gradient algorithm for fast supervised learning. Neural Networks 6, 525–533 (1993)

    Article  Google Scholar 

  2. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 5, 989–993 (1994)

    Article  Google Scholar 

  3. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, New York (1981)

    MATH  Google Scholar 

  4. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Exploration in the Microstructure of Cognition, vol. 1, MIT Press, Cambridge (1986)

    Google Scholar 

  5. Van Ooyen, A., Nienhuis, B.: Improving the convergence of the back-propagation algorithm. Neural Networks 5, 465–471

    Google Scholar 

  6. Vitela, J.E., Reifman, J.: Premature Saturation in Backpropagation Networks: Mechanism and Necessary Conditions. Neural Networks 10(4), 721–735 (1997)

    Article  Google Scholar 

  7. Blum, E.K., Li, L.K.: Approximation theory and feedforward networks. Neural Networks 4, 511–515 (1991)

    Article  Google Scholar 

  8. Gori, M., Tesi, A.: On the problem of local minima in back-propagation. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(1), 76–86 (1992)

    Article  Google Scholar 

  9. Fahlman, S.E.: Fast learning variations on back-propagation: An empirical study. In: Touretzky, D., Hinton, G., Sejnowski, T. (eds.) Proc. the 1988 Connectionist Models Summer School, Pittsburgh, pp. 38–51 (1989)

    Google Scholar 

  10. Riedmiller, M., Braun, H.: A direct adaptive method for faster back-propagation learning: The RPROP Algorithm. In: Proc. of Int. Conf. on Neural Networks, vol. 1, pp. 586–591 (1993)

    Google Scholar 

  11. Igel, C., Husken, M.: Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing 50, 105–123 (2003)

    Article  MATH  Google Scholar 

  12. Ng, S.C., Cheung, C.C., Leung, S.H.: Magnified Gradient Function with Deterministic Weight Evolution in Adaptive Learning. IEEE Trans. on Neural Networks 15(6), 1411–1423 (2004)

    Article  Google Scholar 

  13. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ng, SC., Cheung, CC., Lui, A.kf., Xu, S. (2012). Magnified Gradient Function to Improve First-Order Gradient-Based Learning Algorithms. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds) Advances in Neural Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer Science, vol 7367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31346-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31346-2_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31345-5

  • Online ISBN: 978-3-642-31346-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics