Nothing Special   »   [go: up one dir, main page]

Skip to main content

Pedicle Detection in Planar Radiographs Based on Image Descriptors

  • Conference paper
Image Analysis and Recognition (ICIAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7325))

Included in the following conference series:

Abstract

Assessing spinal deformations requires a 3D evaluation. However, due to restrictions of conventional 3D imaging techniques, 3D reconstructions are typically performed from planar radiographs. Conventional reconstruction methods require a large interaction time for the identification of anatomical structures of interest. Recently, semi-supervised methods were proposed that enable to reduce interaction time. However, these methods have shown difficulties to determine precisely the pedicles of vertebrae, which are fundamental for calculating several clinical indices. This paper proposes a new method for the detection of pedicles in planar radiographs. The method is based in the use of feature descriptors for training a binary classifier and a detection phase that is carried out by sweeping a region of interest classifying all of its pixels. The location of the pedicle corresponds to the candidate with the largest output value of the classifier. The evaluation of the method was performed by comparison with a manual identification from an expert. The classifier used was a Support Vector Machine (SVM) and several descriptors were selected in order to determine which best suits this problem. The best results were obtained using Histograms of Oriented Gradients (HOG), which was able of determining a valid detection in approximatly half of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aubin, C., Descrimes, J., Dansereau, J., Skalli, W., Lavaste, F., Labelle, H.: Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method. Annales de chirurgie 49, 749 (1995)

    Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Benameur, S., Mignotte, M., Labelle, H., De Guise, J.: A hierarchical statistical modeling approach for the unsupervised 3-d biplanar reconstruction of the scoliotic spine. IEEE Transactions on Biomedical Engineering 52(12), 2041–2057 (2005)

    Article  Google Scholar 

  4. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  5. Chang, C., Lin, C.: Libsvm: a library for support vector machines (2001)

    Google Scholar 

  6. Chen, J., Tian, J., Lee, N., Zheng, J., Smith, R., Laine, A.: A Partial Intensity Invariant Feature Descriptor for Multimodal Retinal Image Registration. IEEE Transactions on Biomedical Engineering 57(7), 1707–1718 (2010)

    Article  Google Scholar 

  7. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  9. Doré, V., Duong, L., Cheriet, F., Cheriet, M.: Towards Segmentation of Pedicles on Posteroanterior X-Ray Views of Scoliotic Patients. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 1028–1039. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Dumas, R., Mitton, D., Laporte, S., Dubousset, J., Steib, J., Lavaste, F., Skalli, W.: Explicit calibration method and specific device designed for stereoradiography. Journal of Biomechanics 36(6), 827–834 (2003)

    Article  Google Scholar 

  11. Duong, L., Cheriet, F., Labelle, H.: Automatic Detection of Scoliotic Curves in Posteroanterior Radiographs. IEEE Transactions on Biomedical Engineering 57(5), 1143–1151 (2009)

    Article  Google Scholar 

  12. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing. Prentice-Hall, Upper Saddle River (2004)

    Google Scholar 

  13. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  14. Kadoury, S., Cheriet, F., Laporte, C., Labelle, H.: A versatile 3d reconstruction system of the spine and pelvis for clinical assessment of spinal deformities. Medical and Biological Engineering and Computing 45(6), 591–602 (2007)

    Article  Google Scholar 

  15. Kubat, M., Holte, R., Matwin, S.: Learning When Negative Examples Abound. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 146–153. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  16. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann (1997)

    Google Scholar 

  17. Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630

    Google Scholar 

  18. Mitton, D., Landry, C., Veron, S., Skalli, W., Lavaste, F., De Guise, J.: 3d reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Medical and Biological Engineering and Computing 38(2), 133–139 (2000)

    Article  Google Scholar 

  19. Moura, D., Barbosa, J., Reis, A., Manuel, J., Tavares, R.: A flexible approach for the calibration of biplanar radiography of the spine on conventional radiological systems. Computer Modeling in Engineering & Sciences 60(2), 115–138 (2010)

    Google Scholar 

  20. Moura, D.C., Boisvert, J., Barbosa, J.G., Labelle, H., Tavares, J.M.R.S.: Fast 3D reconstruction of the spine from biplanar radiographs using a deformable articulated model. Medical Engineering & Physics 33(8), 924–933 (2011)

    Article  Google Scholar 

  21. Stokes, I.: Three-dimensional terminology of spinal deformity: a report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine 19(2), 236 (1994)

    Article  Google Scholar 

  22. Tola, E., Lepetit, V., Fua, P.: Daisy: an Efficient Dense Descriptor Applied to Wide Baseline Stereo, vol. 32, pp. 815–830

    Google Scholar 

  23. Wu, G., Chang, E.: Class-boundary alignment for imbalanced dataset learning. In: Proceedings of the ICML, vol. 3. Citeseer (2003)

    Google Scholar 

  24. Yazici, M., Acaroglu, E., Alanay, A., Deviren, V., Cila, A., Surat, A.: Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. Journal of Pediatric Orthopaedics 21(2), 252 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cunha, P., Moura, D.C., Barbosa, J.G. (2012). Pedicle Detection in Planar Radiographs Based on Image Descriptors. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31298-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31298-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31297-7

  • Online ISBN: 978-3-642-31298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics