Nothing Special   »   [go: up one dir, main page]

Skip to main content

Color Correction Using 3D Gaussian Mixture Models

  • Conference paper
Image Analysis and Recognition (ICIAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7324))

Included in the following conference series:

Abstract

The current paper proposes a novel color correction approach based on a probabilistic segmentation framework by using 3D Gaussian Mixture Models. Regions are used to compute local color correction functions, which are then combined to obtain the final corrected image. The proposed approach is evaluated using both a recently published metric and two large data sets composed of seventy images. The evaluation is performed by comparing our algorithm with eight well known color correction algorithms. Results show that the proposed approach is the highest scoring color correction method. Also, the proposed single step 3D color space probabilistic segmentation reduces processing time over similar approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision 74, 59–73 (2007), http://portal.acm.org/citation.cfm?id=1265138.1265141

    Article  Google Scholar 

  2. Fecker, U., Barkowsky, M., Kaup, A.: Histogram-based prefiltering for luminance and chrominance compensation of multiview video. IEEE Transactions on Circuits and Systems for Video Technology 18(9), 1258–1267 (2008)

    Article  Google Scholar 

  3. Jia, J., Tang, C.K.: Image registration with global and local luminance alignment. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, Washington, DC, USA, vol. 1, pp. 156–163 (October 2003)

    Google Scholar 

  4. Jia, J., Tang, C.K.: Tensor voting for image correction by global and local intensity alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(1), 36–50 (2005)

    Article  Google Scholar 

  5. Kim, S.J., Pollefeys, M.: Robust radiometric calibration and vignetting correction. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(4), 562–576 (2008)

    Article  Google Scholar 

  6. Litvinov, A., Schechner, Y.Y.: Radiometric framework for image mosaicking. Journal of the Optical Society of America 22(5), 839–848 (2005), http://josaa.osa.org/abstract.cfm?URI=josaa-22-5-839

    Article  Google Scholar 

  7. Pitie, F., Kokaram, A.C., Dahyot, R.: N-dimensional probablility density function transfer and its application to colour transfer. In: Proceedings of the Eleventh IEEE International Conference on Computer Vision, vol. 2, pp. 1434–1439 (2005)

    Google Scholar 

  8. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Computer Graphics and Applications 21, 34–41 (2001)

    Article  Google Scholar 

  9. Tai, Y.W., Jia, J., Tang, C.K.: Local color transfer via probabilistic segmentation by expectation-maximization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 747–754 (June 2005)

    Google Scholar 

  10. Tsin, Y., Ramesh, V., Kanade, T.: Statistical calibration of ccd imaging process. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, vol. 1, pp. 480–487 (2001)

    Google Scholar 

  11. Xiao, X., Ma, L.: Color transfer in correlated color space. In: Proceedings of the ACM International Conference on Virtual Reality Continuum and its Applications, pp. 305–309 (June 2006), http://doi.acm.org/10.1145/1128923.1128974

  12. Xu, W., Mulligan, J.: Performance evaluation of color correction approaches for automatic multi-view image and video stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 263–270 (June 2010)

    Google Scholar 

  13. Zhang, M., Georganas, N.D.: Fast color correction using principal regions mapping in different color spaces. Real-Time Imaging 10(1), 23–30 (2004), http://www.sciencedirect.com/science/article/B6WPR-4BBMT85-1/2/95db47c705c7790b98db4e9692bf930c

    Article  Google Scholar 

  14. Zheng, Y., Yu, J., Kang, S.B., Lin, S., Kambhamettu, C.: Single-image vignetting correction using radial gradient symmetry. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (June 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oliveira, M., Sappa, A.D., Santos, V. (2012). Color Correction Using 3D Gaussian Mixture Models. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31295-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31295-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31294-6

  • Online ISBN: 978-3-642-31295-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics