Abstract
In this work we present and evaluate a methodology to classify web documents into a predefined hierarchy using the textual content of the documents. The general problem of hierarchical classification using taxonomies with thousands of categories is a hard task due to the problem of scarcity of training data. Hierarchical classification is one of the rare situations where, despite the large amount of available data, as more documents become available, more classes are also added to the hierarchy. This leads to a lack of training data for most of the categories, which produces poor individual classification models and tends to bias the classification to dense categories. Here we propose a novel feature extraction technique called Stratified Discriminant Analysis (sDA) that reduces the dimensions of the text-content features of the web documents along the different levels of the hierarchy. The sDA model is intended to reduce the effects of scarcity of data by better grouping and identify the categories with few training examples leading to more robust classification models for those categories. The results of classifying web pages from the Kids&Teens branch of the DMOZ directory show that our model extracts features that are well suited for category grouping of web pages and representation of categories with few training examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large taxonomies. In: Proc. 32nd ACM SIGIR, pp. 11–18. ACM Press (2009)
Cai, D., He, X., Han, J.: Srda: An efficient algorithm for large-scale discriminant analysis. IEEE Transactions on Knowledge and Data Engineering 20(1), 1–12 (2008)
Cai, L., Hofmann, T.: Hierarchical document categorization with support vector machines. In: Proc. 13th ACM CKIM, pp. 78–87. ACM Press (2004)
Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a comprehensive study. Journal of Intelligent Information Systems 28(1), 37–78 (2007)
Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical classification. Journal Machine Learning Reasearch 7, 31–54 (2006)
Chakrabarti, S., Dom, B.E., Agrawal, R., Raghavan, P.: Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies. Journal of Very Large Data Bases 7(3), 163–178 (1998)
Chen, H., Dumais, S.: Bringing order to the web: automatically categorizing search results. In: Proc. SIGCHI Conference, pp. 145–152. ACM Press (2000)
Dumais, S., Chen, H.: Hierarchical classification of web content. In: Proc. 23rd ACM SIGIR, pp. 256–263. ACM Press (2000)
Dumais, S., Cutrell, E., Chen, H.: Optimizing search by showing results in context. In: Proc. SIGCHI Conference, pp. 277–284. ACM Press (2001)
Fagni, T., Sebastiani, F.: Selecting negative examples for hierarchical text classification: an experimental comparison. Journal of the American Society for Information Science 61(11), 2256–2265 (2010)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)
Howland, P., Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8), 995–1006 (2004)
Kim, H., Howland, P., Park, H.: Dimension reduction in text classification with support vector machines. Journal of Machine Learning Research 6, 37–53 (2005)
Kosmopoulos, A., Gaussier, E., Paliouras, G., Aseervatham, S.: The ECIR 2010 Large Scale Hierarchical Classification Workshop (2010)
Lan, M., Tan, C.L., Low, H.-B., Yuan, S.: A comprehensive comparative study on term weighting schemes for text categorization with support vector machines. In: Proc. 14th WWW, pp. 1032–1033 (2005)
Li, W., McCallum, A.: Pachinko allocation: Dag-structured mixture models of topic correlations. In: Proc. 23rd ICML, pp. 577–584. ACM Press (2006)
Li, T., Zhu, S., Ogihara, M.: Text categorization via generalized discriminant analysis. Information Processing and Management 44(5), 1684–1697 (2008)
Liu, T.-Y., Yang, Y., Wan, H., Zeng, H.-J., Chen, Z., Ma, W.-Y.: Support vector machines classification with a very large-scale taxonomy. ACM SIGKDD Explorations Newsletter 7(1), 36–43 (2005)
Malik, H.: Improving hierarchical SVMS by hierarchy flattening and lazy classification. In: Proc. Large-Scale Hierarchical Classification Workshop of ECIR (2010)
McCallum, A., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classification by shrinkage in a hierarchy of classes. In: Proc. 15th ICML, pp. 359–367. Morgan Kaufmann Publishers Inc. (1998)
Mimno, D., Li, W., McCallum, A.: Mixtures of hierarchical topics with Pachinko allocation. In: Proc. 24th ICML, pp. 633–640. ACM Press (2007)
Paliouras, G., Gaussier, E., Kosmopoulos, A., Androutsopoulos, I., Artieres, T., Gallinari, P.: Joint ECML/PKDD PASCAL Workshop on Large-Scale Hierarchical Classification (2011)
Park, C.H., Lee, M.: On applying linear discriminant analysis for multi-labeled problems. Pattern Recognition Letters 29(7), 878–887 (2008)
Qi, X., Davidson, B.D.: Web page classification: features and algorithms. ACM Computing Surveys 41(2), 1–31 (2009)
Silla, C., Freitas, A.: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery 22(1), 31–72 (2011)
Torkkola, K.: Linear discriminant analysis in document classification. In: Proc. IEEE ICDM Workshop on Text Mining. IEEE (2001)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, ch. 34, pp. 667–685 (2010)
Xue, G.R., Xing, D., Yang, Q., Yu, Y.: Deep classification in large-scale text hierarchies. In: Proc. 31st ACM SIGIR, pp. 619–626. ACM Press (2008)
Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proc. 14th ICML, pp. 412–420. Morgan Kaufmann Publishers Inc. (1997)
Yen, J., Wang, T.: Regularized discriminant analysis for high dimensional, low sample size data. In: Proc. 12th ACM SIGKDD, pp. 454–463. ACM Press (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gomez, J.C., Moens, MF. (2012). Hierarchical Classification of Web Documents by Stratified Discriminant Analysis. In: Salampasis, M., Larsen, B. (eds) Multidisciplinary Information Retrieval. IRFC 2012. Lecture Notes in Computer Science, vol 7356. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31274-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-31274-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31273-1
Online ISBN: 978-3-642-31274-8
eBook Packages: Computer ScienceComputer Science (R0)