Abstract
We identify commonality in the completeness proof strategies for Euler-based logics and show how, as expressiveness increases, the strategy readily extends. We identify a fragment of concept diagrams, an expressive Euler-based notation, and demonstrate that the completeness proof strategy does not extend to this fragment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hammer, E.: Logic and Visual Information. CSLI Publications (1995)
Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS Journal of Computation and Mathematics 8, 145–194 (2005)
Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing Ontologies: A Case Study. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 257–272. Springer, Heidelberg (2011)
Shin, S.-J.: The Logical Status of Diagrams. Cambridge University Press (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Burton, J., Stapleton, G., Howse, J. (2012). Completeness Proofs for Diagrammatic Logics. In: Cox, P., Plimmer, B., Rodgers, P. (eds) Diagrammatic Representation and Inference. Diagrams 2012. Lecture Notes in Computer Science(), vol 7352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31223-6_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-31223-6_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31222-9
Online ISBN: 978-3-642-31223-6
eBook Packages: Computer ScienceComputer Science (R0)