Nothing Special   »   [go: up one dir, main page]

Skip to main content

Boolean Differences between Two Hexagonal Extensions of the Logical Square of Oppositions

  • Conference paper
Diagrammatic Representation and Inference (Diagrams 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7352))

Included in the following conference series:

Abstract

The classical Aristotelian Square characterizes four formulae in terms of four relations of Opposition: contradiction, contrariety, subcontrariety, and subalternation. This square has been extended into a hexagon by two different strategies of inserting intermediate formulae: (1) the horizontal SB-insertion of Sesmat-Blanché and (2) the vertical SC-insertion of Sherwood-Czeżowski. The resulting visual constellations of opposition relations are radically different, however. The central claim of this paper is that these differences are due to the fact that the SB hexagon is closed under the Boolean operations of meet, join and complement, whereas the SC hexagon is not. Therefore we define the Boolean closure of the SC hexagon by characterizing the remaining 8 (non-trivial) formulae, and demonstrate how the resulting 14 formulae generate 6 SB hexagons. These can be embedded into a much richer 3D Aristotelian structure, namely a rhombic dodecahedron, which also underlies the modal system S5 and the propositional connectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Béziau, J.Y.: New light on the square of oppositions and its nameless corner. Logical Investigations 10, 218–232 (2003)

    Google Scholar 

  2. Blanché, R.: Structures Intellectuelles. Essai sur l’organisation systématique des concepts. Librairie Philosophique J. Vrin, Paris (1969)

    Google Scholar 

  3. Czeżowski, T.: On certain peculiarities of singular propositions. Mind 64(255), 392–395 (1955)

    Article  Google Scholar 

  4. Demey, L.: Structures of Oppositions in Public Announcement Logic. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Springer, Basel (2012)

    Google Scholar 

  5. Horn, L.R.: Hamburgers and truth: Why Gricean explanation is Gricean. In: Hall, K. (ed.) Proceedings of the Sixteenth Annual Meeting of the Berkeley Linguistics Society, pp. 454–471. Berkeley Linguistics Society, Berkeley (1990)

    Google Scholar 

  6. Humberstone, L.: Modality. In: Jackson, F., Smith, M. (eds.) The Oxford Handbook of Contemporary Philosophy, pp. 534–614. OUP, Oxford (2005)

    Google Scholar 

  7. Khomskii, Y.: William of Sherwood, singular propositions and the hexagon of opposition. In: Béziau, J.Y., Payette, G. (eds.) New Perspectives on the Square of Opposition. Peter Lang, Bern (2011)

    Google Scholar 

  8. Kretzmann, N.: William of Sherwood’s Introduction to Logic. Minnesota Archive Editions, Minneapolis (1966)

    Google Scholar 

  9. Moretti, A.: The Geometry of Logical Opposition. Ph.D. thesis, University of Neuchâtel (2009)

    Google Scholar 

  10. Pellissier, R.: Setting n-opposition. Logica Universalis 2(2), 235–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sauriol, P.: Remarques sur la théorie de l’hexagone logique de Blanché. Dialogue 7, 374–390 (1968)

    Article  Google Scholar 

  12. Sesmat, A.: Logique II. Les Raisonnements. Hermann, Paris (1951)

    Google Scholar 

  13. Smessaert, H.: On the 3D visualisation of logical relations. Logica Universalis 3(2), 303–332 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smessaert, H. (2012). Boolean Differences between Two Hexagonal Extensions of the Logical Square of Oppositions. In: Cox, P., Plimmer, B., Rodgers, P. (eds) Diagrammatic Representation and Inference. Diagrams 2012. Lecture Notes in Computer Science(), vol 7352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31223-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31223-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31222-9

  • Online ISBN: 978-3-642-31223-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics