Abstract
This paper describes the development of a new finger-ring shaped sensor device with a coil of wire for recognizing the use of handheld electrical devices such as digital cameras, cellphones, electric toothbrushes, and hair dryers by sensing time-varying magnetic fields emitted by the devices. Recently, sensing the usage of home electrical devices has emerged as a promising area for activity recognition studies because we can estimate high-level daily activities by recognizing the use of electrical devices that exist ubiquitously in our daily lives. A feature of our approach is that we can recognize the use of electrical devices that are not connected to the home infrastructure without the need to equip them with sensors. We evaluated the performance of our approach by using sensor data obtained from real houses. We also investigated the portability of training data between different users.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mynatt, E., Rowan, J., Craighill, S., Jacobs, A.: Digital family portraits: Supporting peace of mind for extended family members. In: CHI 2001, pp. 333–340 (2001)
Maekawa, T., Yanagisawa, Y., Kishino, Y., Kamei, K., Sakurai, Y., Okadome, T.: Object-blog system for environment-generated content. IEEE Pervasive Computing 7(4), 20–27 (2008)
van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: Ubicomp 2008, pp. 1–9 (2008)
Philipose, M., Fishkin, K., Perkowitz, M.: Inferring activities from interactions with objects. IEEE Pervasive Computing 3(4), 50–57 (2004)
Tapia, E.M., Intille, S.S., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)
Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)
Lester, J., Choudhury, T., Borriello, G.: A Practical Approach to Recognizing Physical Activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)
Maekawa, T., Yanagisawa, Y., Kishino, Y., Ishiguro, K., Kamei, K., Sakurai, Y., Okadome, T.: Object-Based Activity Recognition with Heterogeneous Sensors on Wrist. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 246–264. Springer, Heidelberg (2010)
Maekawa, T., Watanabe, S.: Unsupervised activity recognition with user’s physical characteristics data. In: Int’l Symp. on Wearable Computers, pp. 89–96 (2011)
Kim, Y., Schmid, T., Charbiwala, Z., Srivastava, M.: ViridiScope: design and implementation of a fine grained power monitoring system for homes. In: Ubicomp 2009, pp. 245–254 (2009)
Hart, G.: Nonintrusive appliance load monitoring. Proceedings of the IEEE 80(12), 1870–1891 (1992)
Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, G.D.: At the Flick of a Switch: Detecting and Classifying Unique Electrical Events on the Residential Power Line (Nominated for the Best Paper Award). In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 271–288. Springer, Heidelberg (2007)
Gupta, S., Reynolds, M., Patel, S.: ElectriSense: Single-point sensing using EMI for electrical event detection and classification in the home. In: Ubicomp 2010, pp. 139–148 (2010)
Maekawa, T., Kishino, Y., Sakurai, Y., Suyama, T.: Recognizing the Use of Portable Electrical Devices with Hand-Worn Magnetic Sensors. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 276–293. Springer, Heidelberg (2011)
Lenz, J.: A review of magnetic sensors. Proceedings of the IEEE 78(6), 973–989 (1990)
Lifton, J., Feldmeier, M., Ono, Y., Lewis, C., Paradiso, J.: A platform for ubiquitous sensor deployment in occupational and domestic environments. In: IPSN 2007, pp. 119–127 (2007)
Jiang, X., Dawson-Haggerty, S., Dutta, P., Culler, D.: Design and implementation of a high-fidelity ac metering network. In: IPSN 2009, pp. 253–264 (2009)
Cohn, G., Morris, D., Patel, S.N., Tan, D.S.: Your noise is my command: sensing gestures using the body as an antenna. In: CHI 2011, pp. 791–800 (2011)
Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)
Leggetter, C., Woodland, P.: Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models. Computer Speech & Language 9(2), 171–185 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maekawa, T., Kishino, Y., Yanagisawa, Y., Sakurai, Y. (2012). Recognizing Handheld Electrical Device Usage with Hand-Worn Coil of Wire. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds) Pervasive Computing. Pervasive 2012. Lecture Notes in Computer Science, vol 7319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31205-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-31205-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31204-5
Online ISBN: 978-3-642-31205-2
eBook Packages: Computer ScienceComputer Science (R0)