Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effective Computation of Immersion Obstructions for Unions of Graph Classes

  • Conference paper
Algorithm Theory – SWAT 2012 (SWAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7357))

Included in the following conference series:

Abstract

In the final paper of the Graph Minors series [Neil Robertson and Paul D. Seymour. Graph minors XXIII. Nash-Williams’ immersion conjecture J. Comb. Theory, Ser. B, 100(2):181–205, 2010.], N. Robertson and P. Seymour proved that graphs are well-quasi-ordered with respect to the immersion relation. A direct implication of this theorem is that each class of graphs that is closed under taking immersions can be fully characterized by forbidding a finite set of graphs (immersion obstruction set). However, as the proof of the well-quasi-ordering theorem is non-constructive, there is no generic procedure for computing such a set. Moreover, it remains an open issue to identify for which immersion-closed graph classes the computation of those sets can become effective. By adapting the tools that where introduced in [Isolde Adler, Martin Grohe and Stephan Kreutzer. Computing excluded minors, SODA, 2008: 641-650.] for the effective computation of obstruction sets for the minor relation, we expand the horizon of the computability of obstruction sets for immersion-closed graph classes. In particular, we prove that there exists an algorithm that, given the immersion obstruction sets of two graph classes that are closed under taking immersions, outputs the immersion obstruction set of their union.

The first author was supported by a grant of the Special Account for Research Grants of the National and Kapodistrian University of Athens (project code: 70/4/10311) and part of her research took place while she was visiting the Department of Applied Mathematics of Charles University in Prague, under the support of the ERC starting grant CCOSA (grant agreement no. 259385).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Teng, S.-H. (ed.) SODA, pp. 641–650. SIAM (2008)

    Google Scholar 

  2. Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Rankings of graphs. SIAM J. Discrete Math. 11(1), 168–181, (electronic) (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cattell, K., Dinneen, M.J., Downey, R.G., Fellows, M.R., Langston, M.A.: On computing graph minor obstruction sets. Theor. Comput. Sci. 233(1-2), 107–127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Courcelle, B., Downey, R.G., Fellows, M.R.: A note on the computability of graph minor obstruction sets for monadic second order ideals. J. UCS 3(11), 1194–1198 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)

    Article  MathSciNet  Google Scholar 

  6. DeVos, M., Dvořák, Z., Fox, J., McDonald, J., Mohar, B., Scheide, D.: Minimum degree condition forcing complete graph immersion. ArXiv e-prints (January 2011)

    Google Scholar 

  7. Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)

    Google Scholar 

  8. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. Assoc. Comput. Mach. 35(3), 727–739 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fellows, M.R., Langston, M.A.: On search, decision, and the efficiency of polynomial-time algorithms. J. Comput. System Sci. 49(3), 769–779 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grohe, M., Kawarabayashi, K.I., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: STOC, pp. 479–488 (2011)

    Google Scholar 

  11. Kawarabayashi, K.I., Wollan, P.: A shorter proof of the graph minor algorithm: the unique linkage theorem. In: Schulman, L.J. (ed.) STOC, pp. 687–694. ACM (2010)

    Google Scholar 

  12. Lagergren, J.: The Size of an Interwine. In: Abiteboul, S., Shamir, E. (eds.) ICALP 1994. LNCS, vol. 820, pp. 520–531. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  13. Mendelson, E.: Introduction to mathematical logic, 3rd edn. Chapman and Hall (1987)

    Google Scholar 

  14. Robertson, N., Seymour, P.D.: Graph minors. XXII. Irrelevant vertices in linkage problems (to appear)

    Google Scholar 

  15. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory. Series B 63(1), 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Combin. Theory Ser. B 62(2), 323–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. J. Comb. Theory, Ser. B 89(1), 43–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Robertson, N., Seymour, P.D.: Graph minors. XXI. Graphs with unique linkages. J. Comb. Theory, Ser. B 99(3), 583–616 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion conjecture. J. Comb. Theory, Ser. B 100(2), 181–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Seese, D.: The structure of models of decidable monadic theories of graphs. Ann. Pure Appl. Logic 53(2), 169–195 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giannopoulou, A.C., Salem, I., Zoros, D. (2012). Effective Computation of Immersion Obstructions for Unions of Graph Classes. In: Fomin, F.V., Kaski, P. (eds) Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes in Computer Science, vol 7357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31155-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31155-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31154-3

  • Online ISBN: 978-3-642-31155-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics