Abstract
In the final paper of the Graph Minors series [Neil Robertson and Paul D. Seymour. Graph minors XXIII. Nash-Williams’ immersion conjecture J. Comb. Theory, Ser. B, 100(2):181–205, 2010.], N. Robertson and P. Seymour proved that graphs are well-quasi-ordered with respect to the immersion relation. A direct implication of this theorem is that each class of graphs that is closed under taking immersions can be fully characterized by forbidding a finite set of graphs (immersion obstruction set). However, as the proof of the well-quasi-ordering theorem is non-constructive, there is no generic procedure for computing such a set. Moreover, it remains an open issue to identify for which immersion-closed graph classes the computation of those sets can become effective. By adapting the tools that where introduced in [Isolde Adler, Martin Grohe and Stephan Kreutzer. Computing excluded minors, SODA, 2008: 641-650.] for the effective computation of obstruction sets for the minor relation, we expand the horizon of the computability of obstruction sets for immersion-closed graph classes. In particular, we prove that there exists an algorithm that, given the immersion obstruction sets of two graph classes that are closed under taking immersions, outputs the immersion obstruction set of their union.
The first author was supported by a grant of the Special Account for Research Grants of the National and Kapodistrian University of Athens (project code: 70/4/10311) and part of her research took place while she was visiting the Department of Applied Mathematics of Charles University in Prague, under the support of the ERC starting grant CCOSA (grant agreement no. 259385).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Teng, S.-H. (ed.) SODA, pp. 641–650. SIAM (2008)
Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Rankings of graphs. SIAM J. Discrete Math. 11(1), 168–181, (electronic) (1998)
Cattell, K., Dinneen, M.J., Downey, R.G., Fellows, M.R., Langston, M.A.: On computing graph minor obstruction sets. Theor. Comput. Sci. 233(1-2), 107–127 (2000)
Courcelle, B., Downey, R.G., Fellows, M.R.: A note on the computability of graph minor obstruction sets for monadic second order ideals. J. UCS 3(11), 1194–1198 (1997)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)
DeVos, M., Dvořák, Z., Fox, J., McDonald, J., Mohar, B., Scheide, D.: Minimum degree condition forcing complete graph immersion. ArXiv e-prints (January 2011)
Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)
Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. Assoc. Comput. Mach. 35(3), 727–739 (1988)
Fellows, M.R., Langston, M.A.: On search, decision, and the efficiency of polynomial-time algorithms. J. Comput. System Sci. 49(3), 769–779 (1994)
Grohe, M., Kawarabayashi, K.I., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: STOC, pp. 479–488 (2011)
Kawarabayashi, K.I., Wollan, P.: A shorter proof of the graph minor algorithm: the unique linkage theorem. In: Schulman, L.J. (ed.) STOC, pp. 687–694. ACM (2010)
Lagergren, J.: The Size of an Interwine. In: Abiteboul, S., Shamir, E. (eds.) ICALP 1994. LNCS, vol. 820, pp. 520–531. Springer, Heidelberg (1994)
Mendelson, E.: Introduction to mathematical logic, 3rd edn. Chapman and Hall (1987)
Robertson, N., Seymour, P.D.: Graph minors. XXII. Irrelevant vertices in linkage problems (to appear)
Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory. Series B 63(1), 65–110 (1995)
Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Combin. Theory Ser. B 62(2), 323–348 (1994)
Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. J. Comb. Theory, Ser. B 89(1), 43–76 (2003)
Robertson, N., Seymour, P.D.: Graph minors. XXI. Graphs with unique linkages. J. Comb. Theory, Ser. B 99(3), 583–616 (2009)
Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion conjecture. J. Comb. Theory, Ser. B 100(2), 181–205 (2010)
Seese, D.: The structure of models of decidable monadic theories of graphs. Ann. Pure Appl. Logic 53(2), 169–195 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giannopoulou, A.C., Salem, I., Zoros, D. (2012). Effective Computation of Immersion Obstructions for Unions of Graph Classes. In: Fomin, F.V., Kaski, P. (eds) Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes in Computer Science, vol 7357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31155-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-31155-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31154-3
Online ISBN: 978-3-642-31155-0
eBook Packages: Computer ScienceComputer Science (R0)