Abstract
A watershed segmentation algorithm is proposed for automatic extraction of tree crowns from LiDAR data to support 3-d modelling of forest stands. A relatively sparse LiDAR point cloud was converted to a surface elevation in raster format and a canopy height model (CHM) extracted. Then, the segmentation method was applied on the CHM and results combined with the original point cloud to generate models of individual tree crowns. The method was tested in 200 circular plots (400 m 2) located over 50 sites of a conservation area in Mexico City. The segmentation method exhibited a moderate to perfect detection rate on 66% of plots tested. One major factor for a poor detection was identified as the relatively low sampling rate of LiDAR data with respect to crown sizes.
Chapter PDF
Similar content being viewed by others
References
Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection (1979), http://cmm.ensmp.fr/~beucher/publi/watershed.pdf
Brandtberg, T., Warner, T., Landenberger, R., McGraw, J.: Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in north america. Remote Sensing of Environment 85(3), 290–303 (2003)
Chen, Q., Baldocchi, D., Gong, P., Kelly, M.: Isolating individual trees in a savanna woodland using small footprint lidar data. Photogrammetric Engineering and Remote Sensing 72(8), 923–932 (2006)
CONAFOR-SEMARNAT: Manual y procedimientos para el muestreo de campo para el inventario nacional forestal y de suelos (S/F), http://148.223.105.188:2222/gif/snif_portal/secciones/inventarionacional/documentos/ManualMuestreoCampo.pdf
Gutiérrez, M.T., González, J., Zamorano, J.: La Cuenca de México y sus cambios demográfico-espaciales. In: Temas Selectos de Geografía, p. 155. Instituto de Geografía, UNAM, México (2005)
Hyyppä, J., Hyyppä, H., Yu, X., Kaartinen, H., Kukko, A., Holopainen, M.: Topographic Laser Ranging and Scanning. In: Forest Inventory Using Small-Footprint Airborne LiDAR, ch. 12, pp. 335–370. CRC Press (2009)
Hyyppä, J., Kelle, O., Lehikoinen, M., Inkinen, M.: A segmentation-based method to retrieve stem volume estimates from 3-d tree height models produced by laser scanners. IEEE Transactions on Geoscience and Remote Sensing 39(5), 969–975 (2001)
Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing 29(6), 1153–1160 (1981)
Silván-Cárdenas, J.L., Wang, L.: A multi-resolution approach for filtering LiDAR altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing 61(1), 11–22 (2006)
Silván-Cárdenas, J.L., Wang, L.: Extraction of Buildings Footprint from LiDAR Altimetry Data with the Hermite Transform. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS, vol. 6718, pp. 314–321. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Silván-Cárdenas, J.L. (2012). A Segmentation Method for Tree Crown Detection and Modelling from LiDAR Measurements. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera López, J.A., Boyer, K.L. (eds) Pattern Recognition. MCPR 2012. Lecture Notes in Computer Science, vol 7329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31149-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-31149-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31148-2
Online ISBN: 978-3-642-31149-9
eBook Packages: Computer ScienceComputer Science (R0)