Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Detailed Localization of Facial Features

  • Conference paper
Advanced Research in Applied Artificial Intelligence (IEA/AIE 2012)

Abstract

We propose a complete framework for automatic detailed facial feature localization. Feature points and contours of the eyes, the nose, the mouth and the chin are of interest. Face detection is performed followed by the region detection that locates a rough bounding box of each facial component, and detailed features are then extracted within each bounding box. Since the feature points lie on the shape contours, we start from shape contour extraction, and then detect the feature points from the extracted contours. Experimental results show the robustness and accuracy of our methods. The main application of our work is automatic diagnosis based on facial features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dalal, A.B., Phadk, S.R.: Morphometric analysis of face in dysmorphology. Computer Methods and Programs in Biomedicine 85(2), 165–172 (2007)

    Article  Google Scholar 

  2. Loos, H.S., Wieczorek, D., Würtz, R.P., Malsburg, C., Horsthemke, B.: Computer-based recognition of dysmorphic faces. Eur. J. Hum. Genet. 11(8), 555–560 (2003)

    Article  Google Scholar 

  3. Boehringer, S., Vollmar, T., Tasse, C., Wurtz, R.P., Gillessen-Kaesbach, G., Horsthemke, B., Wieczorek, D.: Syndrome identification based on 2D analysis software. Eur. J. Hum. Genet. 14(10), 1082–1089 (2006)

    Article  Google Scholar 

  4. Feris, R.S., Gemmell, J., Toyama, K., Krüger, V.: Hierarchical Wavelet Networks for Facial Feature Localization. In: ICCV 2001 Workshop (2001)

    Google Scholar 

  5. Gourier, N., Hall, D., Crowley, J.L.: Facial features detection robust to pose, illumination and identity. In: International Conference on Systems Man and Cybernetics, pp. 617–622 (2004)

    Google Scholar 

  6. Cristinacce, D., Cootes, T., Scott, I.: A Multi-Stage Approach to Facial Feature Detection. In: BMVC 2004, pp. 231–240 (2004)

    Google Scholar 

  7. Asteriadis, S., Nikolaidis, N., Pitas, I.: Facial feature detection using distance vector fields. Pattern Recognition 42, 1388–1398 (2009)

    Article  MATH  Google Scholar 

  8. Kozakaya, T., Shibata, T., Yuasa, M., Yamaguchi, O.: Facial feature localization using weighted vector concentration approach. Image and Vision Computing 28, 772–780 (2010)

    Article  Google Scholar 

  9. Wang, S., Laua, W.H., Leung, S.H.: Automatic lip contour extraction from color images. Pattern Recognition 37, 2375–2387 (2004)

    MATH  Google Scholar 

  10. Wang, S.L., Leung, S.H., Lau, W.H.: Lip segmentation by fuzzy clustering incorporating with shape function. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 1077–1080 (2002)

    Google Scholar 

  11. Eveno, N., Caplier, A., Coulon, P.Y.: Accurate and quasi-automatic lip tracking. IEEE Transactions on Circuits and Systems for Video Technology 14(5), 706–715 (2004)

    Article  Google Scholar 

  12. Yokogawa, Y., Funabiki, N., Higashino, T., Oda, M., Mori, Y.: A Proposal of Improved Lip Contour Extraction Method Using Deformable Template Matching and Its Application to Dental Treatment. Systems and Computers in Japan 38(5) (2007)

    Google Scholar 

  13. Vezhnevets, V., Degtiareva, A.: Robust and Accurate Eye Contour Extraction. In: Proc. Graphicon 2003, pp. 81–84 (2003)

    Google Scholar 

  14. Zheng, Z., Yang, J., Yang, L.: A robust method for eye features extraction on color image. Pattern Recognition Letters 26, 2252–2261 (2005)

    Article  Google Scholar 

  15. Ding, L., Martinez, A.: Precise detailed detection of faces and facial features. In: CVPR (2008)

    Google Scholar 

  16. Kampmann, M.: MAP estimation of chin and cheek contours in video sequences. EURASIP J. Appl. Signal Process. 2004(6), 913–922 (2004)

    Article  Google Scholar 

  17. Wang, J., Su, G.: The research of chin contour in fronto-parallel images. In: Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 2814–2819 (2003)

    Google Scholar 

  18. Chen, Q., Cham, W., Lee, K.: Extracting eyebrow contour and chin contour for face recognition. Pattern Recognition 40(8), 2292–2300 (2007)

    Article  MATH  Google Scholar 

  19. Lam, K.M., Yan, H.: An Analytic-to-Holistic Approach for Face Recognition Based on a Single Frontal View. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(7), 673–686 (1998)

    Article  Google Scholar 

  20. Huang, F.Z., Su, J.: Face contour detection using geometric active contours. In: Proceedings of the Fourth World Congress on Intelligent Control and Automation, pp. 2090–2093 (2002)

    Google Scholar 

  21. Sun, D., Wu, L.: Face boundary extraction by statistical constraint active contour model. In: Proceedings of the International Conference on Systems, Man and Cybernetics, vol. 6, pp. 14–17 (2002)

    Google Scholar 

  22. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: CVPR, pp. I. 511– I. 518 (2001)

    Google Scholar 

  23. Tanaka, K., Sano, M., Ohara, S., Okudaira, M.: A parametric template method and its application to robust matching. In: CVPR, vol. 1, pp. 620–627 (2000)

    Google Scholar 

  24. Duda, R., Hart, P.: Use of the hough transform to detect lines and curves in pictures. Communication of the Association of Computer Machinery 15(1), 11–15 (1972)

    Article  Google Scholar 

  25. Canzlerm, U., Dziurzyk, T.: Extraction of Non Manual Features for Video based Sign Language Recognition. In: Proceedings of IAPR Workshop, pp. 318–321 (2002)

    Google Scholar 

  26. Wörz, S., Rohr, K.: Localization of anatomical point landmarks in 3D medical images by fitting 3D parametric intensity models. Medical Image Analysis 10, 41–58 (2006)

    Article  Google Scholar 

  27. Tang, C.K., Medioni, G., Lee, M.S.: Tensor Voting. In: Boyer, K., Sarkar, S. (eds.) Perceptual Organization for Artificial Vision Systems. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  28. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing J. 16(5), 295–306 (1998)

    Article  Google Scholar 

  29. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.: The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000)

    Article  Google Scholar 

  30. http://www.bioid.com/downloads/facedb/facedatabase.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, Q., Duan, Y., Zhang, D. (2012). Automatic Detailed Localization of Facial Features. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds) Advanced Research in Applied Artificial Intelligence. IEA/AIE 2012. Lecture Notes in Computer Science(), vol 7345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31087-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31087-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31086-7

  • Online ISBN: 978-3-642-31087-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics