Abstract
We propose a complete framework for automatic detailed facial feature localization. Feature points and contours of the eyes, the nose, the mouth and the chin are of interest. Face detection is performed followed by the region detection that locates a rough bounding box of each facial component, and detailed features are then extracted within each bounding box. Since the feature points lie on the shape contours, we start from shape contour extraction, and then detect the feature points from the extracted contours. Experimental results show the robustness and accuracy of our methods. The main application of our work is automatic diagnosis based on facial features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dalal, A.B., Phadk, S.R.: Morphometric analysis of face in dysmorphology. Computer Methods and Programs in Biomedicine 85(2), 165–172 (2007)
Loos, H.S., Wieczorek, D., Würtz, R.P., Malsburg, C., Horsthemke, B.: Computer-based recognition of dysmorphic faces. Eur. J. Hum. Genet. 11(8), 555–560 (2003)
Boehringer, S., Vollmar, T., Tasse, C., Wurtz, R.P., Gillessen-Kaesbach, G., Horsthemke, B., Wieczorek, D.: Syndrome identification based on 2D analysis software. Eur. J. Hum. Genet. 14(10), 1082–1089 (2006)
Feris, R.S., Gemmell, J., Toyama, K., Krüger, V.: Hierarchical Wavelet Networks for Facial Feature Localization. In: ICCV 2001 Workshop (2001)
Gourier, N., Hall, D., Crowley, J.L.: Facial features detection robust to pose, illumination and identity. In: International Conference on Systems Man and Cybernetics, pp. 617–622 (2004)
Cristinacce, D., Cootes, T., Scott, I.: A Multi-Stage Approach to Facial Feature Detection. In: BMVC 2004, pp. 231–240 (2004)
Asteriadis, S., Nikolaidis, N., Pitas, I.: Facial feature detection using distance vector fields. Pattern Recognition 42, 1388–1398 (2009)
Kozakaya, T., Shibata, T., Yuasa, M., Yamaguchi, O.: Facial feature localization using weighted vector concentration approach. Image and Vision Computing 28, 772–780 (2010)
Wang, S., Laua, W.H., Leung, S.H.: Automatic lip contour extraction from color images. Pattern Recognition 37, 2375–2387 (2004)
Wang, S.L., Leung, S.H., Lau, W.H.: Lip segmentation by fuzzy clustering incorporating with shape function. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 1077–1080 (2002)
Eveno, N., Caplier, A., Coulon, P.Y.: Accurate and quasi-automatic lip tracking. IEEE Transactions on Circuits and Systems for Video Technology 14(5), 706–715 (2004)
Yokogawa, Y., Funabiki, N., Higashino, T., Oda, M., Mori, Y.: A Proposal of Improved Lip Contour Extraction Method Using Deformable Template Matching and Its Application to Dental Treatment. Systems and Computers in Japan 38(5) (2007)
Vezhnevets, V., Degtiareva, A.: Robust and Accurate Eye Contour Extraction. In: Proc. Graphicon 2003, pp. 81–84 (2003)
Zheng, Z., Yang, J., Yang, L.: A robust method for eye features extraction on color image. Pattern Recognition Letters 26, 2252–2261 (2005)
Ding, L., Martinez, A.: Precise detailed detection of faces and facial features. In: CVPR (2008)
Kampmann, M.: MAP estimation of chin and cheek contours in video sequences. EURASIP J. Appl. Signal Process. 2004(6), 913–922 (2004)
Wang, J., Su, G.: The research of chin contour in fronto-parallel images. In: Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 2814–2819 (2003)
Chen, Q., Cham, W., Lee, K.: Extracting eyebrow contour and chin contour for face recognition. Pattern Recognition 40(8), 2292–2300 (2007)
Lam, K.M., Yan, H.: An Analytic-to-Holistic Approach for Face Recognition Based on a Single Frontal View. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(7), 673–686 (1998)
Huang, F.Z., Su, J.: Face contour detection using geometric active contours. In: Proceedings of the Fourth World Congress on Intelligent Control and Automation, pp. 2090–2093 (2002)
Sun, D., Wu, L.: Face boundary extraction by statistical constraint active contour model. In: Proceedings of the International Conference on Systems, Man and Cybernetics, vol. 6, pp. 14–17 (2002)
Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: CVPR, pp. I. 511– I. 518 (2001)
Tanaka, K., Sano, M., Ohara, S., Okudaira, M.: A parametric template method and its application to robust matching. In: CVPR, vol. 1, pp. 620–627 (2000)
Duda, R., Hart, P.: Use of the hough transform to detect lines and curves in pictures. Communication of the Association of Computer Machinery 15(1), 11–15 (1972)
Canzlerm, U., Dziurzyk, T.: Extraction of Non Manual Features for Video based Sign Language Recognition. In: Proceedings of IAPR Workshop, pp. 318–321 (2002)
Wörz, S., Rohr, K.: Localization of anatomical point landmarks in 3D medical images by fitting 3D parametric intensity models. Medical Image Analysis 10, 41–58 (2006)
Tang, C.K., Medioni, G., Lee, M.S.: Tensor Voting. In: Boyer, K., Sarkar, S. (eds.) Perceptual Organization for Artificial Vision Systems. Kluwer Academic Publishers, Boston (2000)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing J. 16(5), 295–306 (1998)
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.: The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
He, Q., Duan, Y., Zhang, D. (2012). Automatic Detailed Localization of Facial Features. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds) Advanced Research in Applied Artificial Intelligence. IEA/AIE 2012. Lecture Notes in Computer Science(), vol 7345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31087-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-31087-4_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31086-7
Online ISBN: 978-3-642-31087-4
eBook Packages: Computer ScienceComputer Science (R0)