Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluating the Design of the R Language

Objects and Functions for Data Analysis

  • Conference paper
ECOOP 2012 – Object-Oriented Programming (ECOOP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7313))

Included in the following conference series:

Abstract

R is a dynamic language for statistical computing that combines lazy functional features and object-oriented programming. This rather unlikely linguistic cocktail would probably never have been prepared by computer scientists, yet the language has become surprisingly popular. With millions of lines of R code available in repositories, we have an opportunity to evaluate the fundamental choices underlying the R language design. Using a combination of static and dynamic program analysis we assess the success of different language features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Becker, R.A., Chambers, J.M., Wilks, A.R.: The New S Language. Chapman and Hall (1988)

    Google Scholar 

  2. Bobrow, D.G., Kahn, K.M., Kiczales, G., Masinter, L., Stefik, M., Zdybel, F.: In: Conference on Object-Oriented Programming, Languages and Applications, OOPSLA (1986)

    Google Scholar 

  3. Chambers, J.M.: Software for Data Analysis: Programming with R. Springer (2008)

    Google Scholar 

  4. Chambers, J.M., Hastie, T.J.: Statistical Models in S. Chapman & Hall (1992)

    Google Scholar 

  5. Ducournau, R.: Coloring, a Versatile Technique for Implementing Object-Oriented Languages. Software: Practice and Experience 41(6), 627–659 (2011)

    Article  Google Scholar 

  6. Kent Dybvig, R.: The Scheme Programming Language. MIT Press (2009)

    Google Scholar 

  7. Gentleman, R., et al. (eds.): Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Statistics for Biology and Health. Springer (2005)

    Google Scholar 

  8. Gentleman, R., Ihaka, R.: Lexical scope and statistical computing. Journal of Computational and Graphical Statistics 9, 491–508 (2000)

    MathSciNet  Google Scholar 

  9. Hudak, P., Hughes, J., Peyton Jones, S., Wadler, P.: A history of Haskell: being lazy with class. In: Conference on History of programming languages, HOPL (2007)

    Google Scholar 

  10. Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5(3), 299–314 (1996)

    Google Scholar 

  11. Keele, L.: Semiparametric Regression for the Social Sciences. Wiley (2008)

    Google Scholar 

  12. Kiczales, G., Rivieres, J.D., Bobrow, D.G.: The Art of the Metabobject Protocol: The Art of the Metaobject Protocol. MIT Press (1991)

    Google Scholar 

  13. Mitchell, E.G.: Functional programming through deep time: modeling the first complex ecosystems on earth. In: Conference on Functional Programming, ICFP (2011)

    Google Scholar 

  14. Parr, T., Fisher, K.: Ll(*): the foundation of the Antlr parser generator. In: Conference on Programming Language Design and Implementation, PLDI (2011)

    Google Scholar 

  15. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2011)

    Google Scholar 

  16. R Development Core Team: The R language definition. R Foundation for Statistical Computing, http://cran.r-project.org/doc/manuals/R-lang.html

  17. Richards, G., Lesbrene, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior of JavaScript programs. In: Conference on Programming Language Design and Implementation, PLDI (2010)

    Google Scholar 

  18. Smith, D.: The R ecosystem. In: The R User Conference 2011 (August 2011)

    Google Scholar 

  19. Steele Jr., G.L.: Common LISP: the language, 2nd edn. Digital Press (1990)

    Google Scholar 

  20. Ungar, D., Smith, R.B.: Self: The power of simplicity. In: Conference on Object-Oriented Programming, Languages and Applications, OOPSLA (1987)

    Google Scholar 

  21. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and Computation 115, 38–94 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morandat, F., Hill, B., Osvald, L., Vitek, J. (2012). Evaluating the Design of the R Language. In: Noble, J. (eds) ECOOP 2012 – Object-Oriented Programming. ECOOP 2012. Lecture Notes in Computer Science, vol 7313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31057-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31057-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31056-0

  • Online ISBN: 978-3-642-31057-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics