Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Evaluation of Learner Self-Explanations and Erroneous Responses for Dialogue-Based ITSs

  • Conference paper
Intelligent Tutoring Systems (ITS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7315))

Included in the following conference series:

Abstract

Self-explanations (SE) are an effective method to promote learning because they can help students identify gaps and inconsistencies in their knowledge and revise their faulty mental models. Given this potential, it is beneficial for intelligent tutoring systems (ITS) to promote SEs and adaptively respond based on SE quality. We developed and evaluated classification models using combinations of SE content (e.g., inverse weighted word-overlap) and contextual cues (e.g., SE response time, topic being discussed). SEs were coded based on correctness and presence of different types of errors. We achieved some success at classifying SE quality using SE content and context. For correct vs. incorrect discrimination, context-based features were more effective, whereas content-based features were more effective when classifying different types of errors. Implications for automatic assessment of learner SEs by ITSs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Simon, H.: Problem solving and education. In: Tuma, D., Reif, F. (eds.) Problem Solving and Education: Issues in Teaching and Research. Erlbaum, Hillsdale (1979)

    Google Scholar 

  2. Graesser, A., Jeon, M., Dufty, D.: Agent technologies designed to facilitate interactive knowledge construction. Discourse Processes 45(4), 298–322 (2008)

    Article  Google Scholar 

  3. Prosser, M., Trigwell, K.: Understanding learning and teaching. The Society for Research into Higher Education and Open University Press, Buckingham (1999)

    Google Scholar 

  4. Chi, M.: Self-explaining expository texts: The dual process of generating inferences and repairing mental models. In: Glaser, R. (ed.) Advances in Instructional Psychology: Educational Design and Cognitive Science, pp. 161–238. Erlbaum, Mahwah (2000)

    Google Scholar 

  5. Chi, M., Bassok, M., Lewis, M., Reimann, P., Glaser, R.: Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science 13, 145–182 (1989)

    Article  Google Scholar 

  6. Chi, M., de Leeuw, N., Chiu, M., LaVancher, C.: Eliciting self-explanations improves understanding. Cognitive Science 18, 439–477 (1994)

    Google Scholar 

  7. Renkl, A., Stark, R., Gruber, H., Mandl, H.: Learning from worked-out examples: The effects of example variability and elicited self-explanations. Contemporary Educational Psychology 23, 90–108 (1998)

    Article  Google Scholar 

  8. McNamara, D.: SERT: Self-explanation reading training. Discourse Processes 38, 1–30 (2004)

    Article  Google Scholar 

  9. Renkl, A.: Learning from worked-out examples: A study on individual differences. Cognitive Science 21, 1–29 (1997)

    Article  Google Scholar 

  10. Aleven, V., Koedinger, K.: An effective meta-cognitive strategy: Learning by doing and explaining with a computer-based cognitive tutor. Cognitive Science 26, 147–179 (2002)

    Article  Google Scholar 

  11. Conati, C., VanLehn, K.: Toward computer-based support of meta-cognitive skills: A computational framework to coach self-explanation. International Journal of Artificial Intelligence in Education 11, 398–415 (2000)

    Google Scholar 

  12. McNamara, D., Levinstein, I., Boonthum, C.: iSTART: Interactive strategy trainer for active reading and thinking. Behavioral Research Methods, Instruments, and Computers 36, 222–233 (2004)

    Article  Google Scholar 

  13. O’Reilly, T., Best, R., McNamara, D.: Self-explanation reading training: Effects for low-knowledge readers. In: Forbus, K., Gentner, D., Regier, T. (eds.) Proceedings of the 26th Annual Meeting of the Cognitive Science Society, pp. 1053–1058. Erlbaum, Mahwah (2004)

    Google Scholar 

  14. Williams, C., D’Mello, S.: Predicting Student Knowledge Level from Domain-Independent Function and Content Words. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part II. LNCS, vol. 6095, pp. 62–71. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Pennebaker, J., Francis, M., Booth, R.: Linguistic Inquiry and Word Count (LIWC). Erlbaum, Mahwah (2001)

    Google Scholar 

  16. Litman, D., Moore, J., Dzikovska, M., Farrow, E.: Using natural language processing to analyze tutorial dialogue corpora across domains and modalities. In: Dimitrova, V., Mizoguchi, R., DuBoulay, B., Graesser, A. (eds.) Proceedings of 14th International Conference on Artificial Intelligence in Education, pp. 149–156. IOS Press, Amsterdam (2009)

    Google Scholar 

  17. Graesser, A., Penumatsa, P., Ventura, M., Cai, Z., Hu, X.: Using LSA in AutoTutor: Learning through mixed-initiative dialogue in natural language. In: Landauer, T., McNamara, D., Dennis, S., Kintsch, W. (eds.) Handbook of Latent Semantic Analysis, pp. 243–262. Lawrence Erlbaum, Mahwah (2007)

    Google Scholar 

  18. Landauer, T., McNamara, D., Dennis, S., Kintsch, W. (eds.): The handbook of latent semantic analysis. Erlbaum, Mahwah (2007)

    Google Scholar 

  19. Aleven, V., Popescu, O., Koedinger, K.: Towards tutorial dialog to support self-explanation: Adding natural language understanding to a cognitive tutor. In: Moore, J., Redfield, C., Johnson, W. (eds.) Proceedings of the 10th International Conference on Artificial Intelligence in Education, pp. 246–255. IOS Press, Amsterdam (2001)

    Google Scholar 

  20. Popescu, O., Koedinger, K.: Towards understanding geometry explanations. In: Rose, C., Freedman, R. (eds.) Building Dialogue Systems for Tutorial Applications, Papers of the 2000 AAAI Fall Symposium, pp. 80–86. AAAI Press, Menlo Park (2000)

    Google Scholar 

  21. Aleven, V., Popescu, O., Koedinger, K.: Pilot-Testing a Tutorial Dialogue System That Supports Self-Explanation. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 344–354. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Rus, V., McCarthy, P., Lintean, M., Graesser, A., McNamara, D.: Assessing student self-explanations in an intelligent tutoring system. In: McNamara, D., Trafton, J. (eds.) Proceedings of the 29th Annual Conference of the Cognitive Science Society, pp. 623–628. Erlbaum, Mahwah (2007)

    Google Scholar 

  23. Rus, V., McCarthy, P.M., Graesser, A.C.: Analysis of a Textual Entailer. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 287–298. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Lehman, B., D’Mello, S.K., Strain, A.C., Gross, M., Dobbins, A., Wallace, P., Millis, K., Graesser, A.C.: Inducing and Tracking Confusion with Contradictions during Critical Thinking and Scientific Reasoning. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 171–178. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Olney, A., Louwerse, M., Mathews, E., Marineau, J., Hite-Mitchell, H., Graesser, A.: Utterance classification in AutoTutor. In: Burstein, J., Leacock, C. (eds.) Building Educational Applications using Natural Language Processing: Proceedings of the HLT - NAACL Conference 2003 Workshop, pp. 1–8. Association for Computational Linguistics, Philadelphia (2003)

    Chapter  Google Scholar 

  26. Baayen, R., Piepenbrock, R., Gulikers, L.: The CELEX lexical database (Release 2) [CD-ROM]. University of Pennsylvania, Linguistic Data Consortium, Philadelphia (1995)

    Google Scholar 

  27. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lehman, B., Mills, C., D’Mello, S., Graesser, A. (2012). Automatic Evaluation of Learner Self-Explanations and Erroneous Responses for Dialogue-Based ITSs. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds) Intelligent Tutoring Systems. ITS 2012. Lecture Notes in Computer Science, vol 7315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30950-2_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30950-2_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30949-6

  • Online ISBN: 978-3-642-30950-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics