Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Computability Power of Membrane Systems with Controlled Mobility

  • Conference paper
How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

Abstract

In a previous paper we have shown that membrane systems with controlled mobility are able to solve a \(\Pi_2^\mathrm{P}\) complete problem. Then, an enriched model with forced endocytosis and forced exocytosis enables us to move to the fourth level in the polynomial hierarchy, the model having \(\Sigma_4^\mathrm{P} \cup \Pi_4^\mathrm{P}\) as lower bound. In this paper we study the computability power of this model (using forced endocytosis and forced exocytosis), and determine the border condition for achieving computational completeness: 4 membranes provide Turing completeness, while 3 membranes do not. Moreover, we show that the restricted division operation (which is crucial in achieving the \(\Sigma_4^\mathrm{P} \cup \Pi_4^\mathrm{P}\) lower bound) does not provide computational completeness. However, Turing completeness can be achieved with pairs of operations (exocytosis, inhibitive endocytosis) and (inhibitive exocytosis, endocytosis) by using 4 membranes. Finally, we present some computability results expressing that membrane systems which use the operations of restricted division, restricted exocytosis and inhibitive endocytosis cannot yield computational completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aman, B., Ciobanu, G.: Solving a Weak NP-complete Problem in Polynomial Time by Using Mutual Mobile Membrane Systems. Acta Informatica 48(7-8), 409–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aman, B., Ciobanu, G.: Mobility in Process Calculi and Natural Computing. Springer (2011)

    Google Scholar 

  3. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory (1989)

    Google Scholar 

  4. Freund, R., Păun, G.: On the Number of Non-terminal Symbols in Graph-Controlled, Programmed and Matrix Grammars. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 214–225. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Krishna, S.N., Aman, B., Ciobanu, G.: Solving the 4QBF Problem in Polynomial Time by Using the Biological-Inspired Mobility (preprint)

    Google Scholar 

  6. Krishna, S.N., Ciobanu, G.: On the Computational Power of Enhanced Mobile Membranes. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 326–335. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Krishna, S.N., Ciobanu, G.: Computability Power of Mobility in Enhanced Mobile Membranes. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 160–170. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Krishna, S.N., Ciobanu, G.: A \(\Sigma_2^P \cup \Pi_2^P\) Lower Bound Using Mobile Membranes. In: Holzer, M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 275–288. Springer, Heidelberg (2011)

    Google Scholar 

  9. Krishna, S.N., Păun, G.: P Systems with Mobile Membranes. Natural Computing 4, 255–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)

    Google Scholar 

  11. Păun, G.: P Systems with Active Membranes: Attacking NP-Complete Problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)

    Google Scholar 

  13. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Complexity-Membrane Division, Membrane Creation. In: [12], pp. 302–336

    Google Scholar 

  14. Rozenberg, G., Salomaa, A. (eds.): The Mathematical Theory of L Systems. Academic Press (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krishna, S.N., Aman, B., Ciobanu, G. (2012). On the Computability Power of Membrane Systems with Controlled Mobility. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics