Abstract
We study the class P s.c of all strongly constructivizable prime models of a finite rich signature σ. It is proven that the Tarski-Lindenbaum algebra \({\mathcal L}(P_{s.c})\) considered together with a Gödel numbering γ of the sentences is a Boolean \(\Pi^0_4\)-algebra whose computable ultrafilters form a dense set in the set of all ultrafilters; moreover, the numerated Boolean algebra \(({\mathcal L}(P_{s.c}),\gamma)\) is universal relative to the class of all Boolean \(\Sigma^0_3\)-algebras. This gives an important characterization of the Tarski-Lindenbaum algebra \({\mathcal L}(P_{s.c})\) of the semantic class P s.c.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goncharov, S.S.: Countable Boolean Algebras and Decidability. Plenum, New York (1997)
Goncharov, S.S., Ershov, Y.L.: Constructive models. Plenum, New York (1999)
Goncharov, S.S., Nurtazin, A.T.: Constructive models of complete decidable theories. Algebra Logika 12(2), 67–77 (1973)
Harrington, L.: Recursively presented prime models. J. Symbolic Logic 39(2), 305–309 (1974)
Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)
Odintsov, S.P., Selivanov, V.L.: Arithmetical hierarchy and ideals of numerated Boolean algebras. Siberian Math. Journal 30(6), 140–149 (1989) (Russian)
Peretyat’kin, M.G.: Finitely axiomatizable theories. Plenum, New York (1997)
Peretyat’kin, M.G.: On the numerated Boolean algebras with a dense set of computable ultrafilters. Siberian Electronic Mathematical Reports (SEMR), 6 pp. (in publication, 2012)
Rogers, H.J.: Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Co., New York (1967)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peretyat’kin, M.G. (2012). On the Tarski-Lindenbaum Algebra of the Class of all Strongly Constructivizable Prime Models. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_59
Download citation
DOI: https://doi.org/10.1007/978-3-642-30870-3_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30869-7
Online ISBN: 978-3-642-30870-3
eBook Packages: Computer ScienceComputer Science (R0)