Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Tarski-Lindenbaum Algebra of the Class of all Strongly Constructivizable Prime Models

  • Conference paper
How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

Abstract

We study the class P s.c of all strongly constructivizable prime models of a finite rich signature σ. It is proven that the Tarski-Lindenbaum algebra \({\mathcal L}(P_{s.c})\) considered together with a Gödel numbering γ of the sentences is a Boolean \(\Pi^0_4\)-algebra whose computable ultrafilters form a dense set in the set of all ultrafilters; moreover, the numerated Boolean algebra \(({\mathcal L}(P_{s.c}),\gamma)\) is universal relative to the class of all Boolean \(\Sigma^0_3\)-algebras. This gives an important characterization of the Tarski-Lindenbaum algebra \({\mathcal L}(P_{s.c})\) of the semantic class P s.c.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goncharov, S.S.: Countable Boolean Algebras and Decidability. Plenum, New York (1997)

    MATH  Google Scholar 

  2. Goncharov, S.S., Ershov, Y.L.: Constructive models. Plenum, New York (1999)

    MATH  Google Scholar 

  3. Goncharov, S.S., Nurtazin, A.T.: Constructive models of complete decidable theories. Algebra Logika 12(2), 67–77 (1973)

    Article  Google Scholar 

  4. Harrington, L.: Recursively presented prime models. J. Symbolic Logic 39(2), 305–309 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  6. Odintsov, S.P., Selivanov, V.L.: Arithmetical hierarchy and ideals of numerated Boolean algebras. Siberian Math. Journal 30(6), 140–149 (1989) (Russian)

    MathSciNet  Google Scholar 

  7. Peretyat’kin, M.G.: Finitely axiomatizable theories. Plenum, New York (1997)

    Google Scholar 

  8. Peretyat’kin, M.G.: On the numerated Boolean algebras with a dense set of computable ultrafilters. Siberian Electronic Mathematical Reports (SEMR), 6 pp. (in publication, 2012)

    Google Scholar 

  9. Rogers, H.J.: Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Co., New York (1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peretyat’kin, M.G. (2012). On the Tarski-Lindenbaum Algebra of the Class of all Strongly Constructivizable Prime Models. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics