Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Note on Ramsey Theorems and Turing Jumps

  • Conference paper
How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

  • 1724 Accesses

Abstract

We give a new treatment of the relations between Ramsey’s Theorem, ACA 0 and ACA 0′. First we combine a result by Girard with a colouring used by Loebl and Nešetril for the analysis of the Paris-Harrington principle to obtain a short combinatorial proof of ACA 0 from Ramsey Theorem for triples. We then extend this approach to ACA 0′ using a characterization of this system in terms of preservation of well-orderings due to Marcone and Montalbán. We finally discuss how to apply this method to \(\mathbf{ACA}_0^+\) using an extension of Ramsey’s Theorem for colouring relatively large sets due to Pudlàk and Rödl and independently to Farmaki.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afshari, B., Rathjen, M.: Reverse Mathematics and well-ordering principles: a pilot study. Ann. Pure Appl. Log. 160(3), 231–237 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlucci, L., Zdanowski, K.: The strength of Ramsey Theorem for colouring relatively large sets, http://arxiv.org/abs/1204.1134

  3. Farmaki, V., Negrepontis, S.: Schreier Sets in Ramsey Theory. Trans. Am. Math. Soc. 360(2), 849–880 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Girard, J.-Y.: Proof Theory and Logical Complexity. Biblipolis, Naples (1987)

    Google Scholar 

  5. Harrington, L., Paris, J.: A mathematical incompleteness in Peano Arithmetic. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 1133–1142. North-Holland (1977)

    Google Scholar 

  6. Hirst, J.: Reverse Mathematics and ordinal exponentiation. Ann. Pure App. Log. 66(1), 1–18 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jockusch Jr., C.G.: Ramsey’s Theorem and Recursion Theory. J. Symb. Log. 37(2), 268–280 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Loebl, M., Nešetřil, J.: An unprovable Ramsey-type theorem. Proc. Am. Math. Soc. 116(3), 819–824 (1992)

    Article  MATH  Google Scholar 

  9. Marcone, A., Montalbàn, A.: The Veblen function for computability theorists. J. Symb. Log. 76(2), 575–602 (2011)

    Article  MATH  Google Scholar 

  10. McAloon, K.: Paris-Harrington incompleteness and transfinite progressions of theories. In: Nerode, A., Shore, R.A. (eds.) Recursion Theory. Proceedings of Symposia in Pure Mathematics, vol. 42, pp. 447–460. American Mathematical Society (1985)

    Google Scholar 

  11. Pudlàk, P., Rödl, V.: Partition theorems for systems of finite subsets of integers. Discret. Math. 39(1), 67–73 (1982)

    Article  MATH  Google Scholar 

  12. Simpson, S.G.: Subsystems of Second Order Arithmetic. Springer (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carlucci, L., Zdanowski, K. (2012). A Note on Ramsey Theorems and Turing Jumps. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics