Nothing Special   »   [go: up one dir, main page]

Skip to main content

Well-Supported Semantics for Logic Programs with Generalized Rules

  • Chapter
Correct Reasoning

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7265))

Abstract

Logic programming under the stable model semantics has been extended to arbitrary formulas. A question of interest is how to characterize the property of well-supportedness, in the sense of Fages, which has been considered a cornerstone in answer set programming. In this paper, we address this issue by considering general logic programs, which consist of disjunctive rules with arbitrary propositional formulas in rule bodies. We define the justified stable semantics for these programs, propose a general notion of well-supportedness, and show the relationships between the two. We address the issue of computational complexity for various classes of general programs. Finally, we show that previously proposed well-supported semantics for aggregate programs and description logic programs are rooted in the justified stable semantics of general programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)

    Google Scholar 

  2. Bartholomew, M., Lee, J., Meng, Y.: First-order extension of the flp stable model semantics via modified circumscription. In: Proc. IJCAI 2011, pp. 724–730 (2011)

    Google Scholar 

  3. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and computational properties of logic programs with aggregates. In: Proc. IJCAI 2005, Edinburgh, Scotland, UK, pp. 406–411. Professional Book Center (2005)

    Google Scholar 

  4. Chen, Y., Wan, H., Zhang, Y., Zhou, Y.: dl2asp: Implementing default logic via answer set programming. In: Proceedings 12th European Conference on Logics in Artificial Intelligence, pp. 104–116 (2010)

    Google Scholar 

  5. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Computing Survey 33(3), 374–425 (2001)

    Article  Google Scholar 

  6. Denecker, M., Marek, V.W., Truszczynski, M.: Ultimate approximation and its application in nonmonotonic knowledge representation systems. Information and Computation 192(1), 84–121 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Propositional case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artifical Intelligence 172(12-13), 1495–1539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In: Proc. IJCAI 2005, Edinburgh, Scotland, UK, pp. 90–96. Professional Book Center (2005)

    Google Scholar 

  10. Faber, W., Leone, N., Pfeifer, G.: Recursive Aggregates in Disjunctive Logic Programs: Semantics and Complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in answer set programming. Artificial Intelligence 175(1), 278–298 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fages, F.: Consistency of clark’s completion and existence of stable models. Journal of Methods of Logic in Computer Science 1, 51–60 (1994)

    Google Scholar 

  13. Ferraris, P.: Answer Sets for Propositional Theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence 175(1), 236–263 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)

    Article  MATH  Google Scholar 

  16. Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and Computation 2(3), 397–425 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lifschitz, V.: Twelve Definitions of a Stable Model. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25(3-4), 369–389 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, G., You, J.-H.: Lparse Programs Revisited: Semantics and Representation of Aggregates. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 347–361. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic programs with aggregates. Theory and Practice of Logic Programming 7, 301–353 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pelov, N., Denecker, M., Bruynooghe, M.: Partial Stable Models for Logic Programs with Aggregates. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 207–219. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schwarz, G., Truszczynski, M.: Nonmonotonic reasoning is sometimes simpler! Journal of Logic and Computation 6(2), 295–308 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, Y.-D.: Well-supported semantics for description logic programs. In: Proc. IJCAI 2011, IJCAI/AAAI, pp. 1081–1086, Barcelona, Spain (2011)

    Google Scholar 

  25. Shen, Y.-D., You, J.-H.: A Default Approach to Semantics of Logic Programs with Constraint Atoms. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 277–289. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Son, T.C., Pontelli, E.: A constructive semantic characterization of aggregates in answer set programming. Theory and Practice of Logic Programming 7, 355–375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary abstract constraint atoms. Journal of Artificial Intelligence Research 29, 353–389 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Truszczynski, M.: Modal interpretations of default logic. In: Proc. IJCAI 1991, pp. 393–398 (1991)

    Google Scholar 

  29. Truszczynski, M.: Reducts of propositional theories, satisfiability relations, and generalizations of semantics of logic programs. Artificial Intelligence 174(16-17), 1285–1306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. You, J.-H., Yuan, L.-Y., Liu, G., Shen, Y.-D.: Logic Programs with Abstract Constraints: Representaton, Disjunction and Complexities. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 228–240. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Zhou, Y., Zhang, Y.: Progression semantics for disjunctive logic programs. In: Proc. AAAI 2011, pp. 286–291 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

You, JH., Shen, YD., Wang, K. (2012). Well-Supported Semantics for Logic Programs with Generalized Rules. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds) Correct Reasoning. Lecture Notes in Computer Science, vol 7265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30743-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30743-0_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30742-3

  • Online ISBN: 978-3-642-30743-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics