Abstract
We examine oscillation behavior of normal logic programs. Both the Gelfond-Lifschitz operator and the T P operator are used to update Herbrand interpretations, and any interpretation finally reaches in an oscillator. It has been shown that the supported model semantics of normal logic programs can characterize point attractors of Boolean networks. We here newly define supported classes of normal logic programs to investigate periodic oscillation induced by the T P operator, and apply them to characterize cycle attractors of Boolean networks. We also relate stable classes and supported classes of normal logic programs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akutsu, T., Melkman, A.A., Tamura, T.: Singleton and 2-periodic attractors of sign-definite Boolean networks. Information Processing Letters 112, 35–38 (2012)
Akutsu, T., Melkman, A.A., Tamura, T., Yamamoto, M.: Determining a singleton attractor of a Boolean network with nested canalyzing functions. Journal of Computational Biology 18, 1275–1290 (2011)
Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann (1988)
Aravindan, C., Dung, P.M.: On the correctness of unfold/fold transformation of normal and extended logic programs. Journal of Logic Programming 24, 201–217 (1995)
Baral, C., Subrahmanian, V.S.: Stable and extension class theory for logic programs and default logics. Journal of Automated Reasoning 8, 345–366 (1992)
Baral, C., Subrahmanian, V.S.: Dualities between alternative semantics for logic programming and nonmonotonic reasoning. Journal of Automated Reasoning 10, 399–420 (1993)
Blair, H.A., Dushin, F., Humenn, P.R.: Simulations between Programs as Cellular Automata. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 115–131. Springer, Heidelberg (1997)
Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5), 1393–1399 (2011)
Dung, P.M.: Negations as hypotheses: An abductive foundation for logic programming. In: Proceedings of ICLP 1991, pp. 3–17. MIT Press (1991)
Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)
Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17), 1917–1925 (2008)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of ICLP 1988, pp. 1070–1080. MIT Press (1988)
Gunter, C.A., Scott, D.S.: Semantic domains. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 633–674. North-Holland (1990)
Inoue, K.: Logic programming for Boolean networks. In: Proceedings of IJCAI 2011, pp. 924–930 (2011)
Inoue, K., Sakama, C.: A fixpoint characterization of abductive logic programs. Journal of Logic Programming 27(2), 107–136 (1996)
Kakas, A.C., Mancarella, P.: Preferred extensions are partial stable models. Journal of Logic Programming 14, 341–348 (1992)
Kalinski, J.: Stable Classes and Operator Pairs for Disjunctive Programs. In: Marek, V.W., Truszczyński, M., Nerode, A. (eds.) LPNMR 1995. LNCS (LNAI), vol. 928, pp. 358–371. Springer, Heidelberg (1995)
Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22(3), 437–467 (1969)
Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press (1993)
Marek, V.W., Niemelä, I., Truszczyński, M.: Logic programs with monotone abstract constraint atoms. Theory and Practice of Logic Programming 8(2), 167–199 (2007)
Marek, W., Subrahmanian, V.S.: The relationship between stable, supported, default and autoepistemic semantics for general logic programs. Theoretical Computer Science 103(2), 365–386 (1992)
Marek, W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38(3), 588–619 (1991)
Saccà, D., Zaniolo, C.: Stable models and non-determinism in logic programs with negation. In: Proceedings of the 9th ACM SIGMOD-SIGACT Symposium on Principles of Database Systems, pp. 205–217 (1990)
Shmulevich, I., Dougherty, E.R., Zhang, W.: From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proceedings of the IEEE 90(11), 1778–1792 (2002)
Tamura, T., Akutsu, T.: Detecting a singleton attractor in a Boolean network utilizing SAT algorithms. IEICE Trans. 92-A(s), 493–501 (2009)
van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. Journal of the ACM 23(4), 733–742 (1976)
Van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)
Wolfman, S.: Cellular Automata And Complexity: Collected Papers. Westview Press (1994)
You, J.H., Yuan, L.: A three-valued semantics for deductive database and logic programs. Journal of Computer and System Sciences 49, 334–361 (1994)
You, J.H., Yuan, L.: On the equivalence of semantics for normal logic programs. Journal of Logic Programming 22(3), 212–222 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Inoue, K., Sakama, C. (2012). Oscillating Behavior of Logic Programs. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds) Correct Reasoning. Lecture Notes in Computer Science, vol 7265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30743-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-30743-0_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30742-3
Online ISBN: 978-3-642-30743-0
eBook Packages: Computer ScienceComputer Science (R0)