Nothing Special   »   [go: up one dir, main page]

Skip to main content

Oscillating Behavior of Logic Programs

  • Chapter
Correct Reasoning

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7265))

Abstract

We examine oscillation behavior of normal logic programs. Both the Gelfond-Lifschitz operator and the T P operator are used to update Herbrand interpretations, and any interpretation finally reaches in an oscillator. It has been shown that the supported model semantics of normal logic programs can characterize point attractors of Boolean networks. We here newly define supported classes of normal logic programs to investigate periodic oscillation induced by the T P operator, and apply them to characterize cycle attractors of Boolean networks. We also relate stable classes and supported classes of normal logic programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akutsu, T., Melkman, A.A., Tamura, T.: Singleton and 2-periodic attractors of sign-definite Boolean networks. Information Processing Letters 112, 35–38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akutsu, T., Melkman, A.A., Tamura, T., Yamamoto, M.: Determining a singleton attractor of a Boolean network with nested canalyzing functions. Journal of Computational Biology 18, 1275–1290 (2011)

    Article  MathSciNet  Google Scholar 

  3. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann (1988)

    Google Scholar 

  4. Aravindan, C., Dung, P.M.: On the correctness of unfold/fold transformation of normal and extended logic programs. Journal of Logic Programming 24, 201–217 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baral, C., Subrahmanian, V.S.: Stable and extension class theory for logic programs and default logics. Journal of Automated Reasoning 8, 345–366 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baral, C., Subrahmanian, V.S.: Dualities between alternative semantics for logic programming and nonmonotonic reasoning. Journal of Automated Reasoning 10, 399–420 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blair, H.A., Dushin, F., Humenn, P.R.: Simulations between Programs as Cellular Automata. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 115–131. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5), 1393–1399 (2011)

    Article  Google Scholar 

  9. Dung, P.M.: Negations as hypotheses: An abductive foundation for logic programming. In: Proceedings of ICLP 1991, pp. 3–17. MIT Press (1991)

    Google Scholar 

  10. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)

    Article  Google Scholar 

  11. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17), 1917–1925 (2008)

    Article  Google Scholar 

  12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of ICLP 1988, pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  13. Gunter, C.A., Scott, D.S.: Semantic domains. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 633–674. North-Holland (1990)

    Google Scholar 

  14. Inoue, K.: Logic programming for Boolean networks. In: Proceedings of IJCAI 2011, pp. 924–930 (2011)

    Google Scholar 

  15. Inoue, K., Sakama, C.: A fixpoint characterization of abductive logic programs. Journal of Logic Programming 27(2), 107–136 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kakas, A.C., Mancarella, P.: Preferred extensions are partial stable models. Journal of Logic Programming 14, 341–348 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kalinski, J.: Stable Classes and Operator Pairs for Disjunctive Programs. In: Marek, V.W., Truszczyński, M., Nerode, A. (eds.) LPNMR 1995. LNCS (LNAI), vol. 928, pp. 358–371. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  18. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  19. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press (1993)

    Google Scholar 

  20. Marek, V.W., Niemelä, I., Truszczyński, M.: Logic programs with monotone abstract constraint atoms. Theory and Practice of Logic Programming 8(2), 167–199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marek, W., Subrahmanian, V.S.: The relationship between stable, supported, default and autoepistemic semantics for general logic programs. Theoretical Computer Science 103(2), 365–386 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marek, W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38(3), 588–619 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saccà, D., Zaniolo, C.: Stable models and non-determinism in logic programs with negation. In: Proceedings of the 9th ACM SIGMOD-SIGACT Symposium on Principles of Database Systems, pp. 205–217 (1990)

    Google Scholar 

  24. Shmulevich, I., Dougherty, E.R., Zhang, W.: From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proceedings of the IEEE 90(11), 1778–1792 (2002)

    Article  Google Scholar 

  25. Tamura, T., Akutsu, T.: Detecting a singleton attractor in a Boolean network utilizing SAT algorithms. IEICE Trans. 92-A(s), 493–501 (2009)

    Article  Google Scholar 

  26. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. Journal of the ACM 23(4), 733–742 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)

    MathSciNet  MATH  Google Scholar 

  28. Wolfman, S.: Cellular Automata And Complexity: Collected Papers. Westview Press (1994)

    Google Scholar 

  29. You, J.H., Yuan, L.: A three-valued semantics for deductive database and logic programs. Journal of Computer and System Sciences 49, 334–361 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. You, J.H., Yuan, L.: On the equivalence of semantics for normal logic programs. Journal of Logic Programming 22(3), 212–222 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Inoue, K., Sakama, C. (2012). Oscillating Behavior of Logic Programs. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds) Correct Reasoning. Lecture Notes in Computer Science, vol 7265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30743-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30743-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30742-3

  • Online ISBN: 978-3-642-30743-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics