Abstract
Recent developments in telematics, such as the wide spread use of positioning services and mobile communication technologies, allow the exact monitoring of vehicles. These advances build the basis for automatic real-time fleet management systems. To be successful such systems have to rely on optimization algorithms for solving dynamic and stochastic vehicle routing problems based on ingredients such as historical data, stochastic modeling, machine learning, fast shortest-path calculation, fast construction heuristics, and exact and (meta)heuristic optimization methods. This book documents the growing interest in and success of hybrid metaheuristics. They are often used to solve complex and large real-world optimization problems, combining advantages from various fields of computer science and mathematical optimization. Within this chapter the application of such methods for the dynamic and stochastic vehicle routing problem is studied. After a general introduction in this field, the main commonalities of dynamic and stochastic vehicle routing problems are described and a short overview of classical algorithms for these problems is given. Then, in the third part hybrid metaheuristics for dynamic problems vehicle routing problems are be described. The third part focusses on stochastic problems. The fourth part examines the combination of dynamic and stochastic problems. The chapter is concluded with an outlook towards future developments in the field as well as promising open research areas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarenga, G., de Abreu Silva, R., Mateus, G.: A hybrid approach for the dynamic vehicle routing problem with time windows. In: Fifth International Conference on Hybrid Intelligent Systems (HIS 2005), 7 pages (November 2005)
Alvarenga, G., Mateus, G., de Tomi, G.: A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows. Computers & Operations Research 34(6), 1561–1584 (2007); Part Special Issue: Odysseus 2003 Second International Workshop on Freight Transportation Logistics
Attanasio, A., Bregman, J., Ghiani, G., Manni, E.: Real-time fleet management at ecourier ltd. In: Sharda, R., Voss, S., Zeimpekis, V., Tarantilis, C.D., Giaglis, G.M., Minis, I. (eds.) Dynamic Fleet Management. Operations Research/Computer Science Interfaces Series, vol. 38, pp. 219–238. Springer, US (2007)
Attanasio, A., Cordeau, J.-F., Ghiani, G., Laporte, G.: Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput. 30, 377–387 (2004)
Beasley, J.: Route first–cluster second methods for vehicle routing. Omega 11(4), 403–408 (1983)
Bent, R.W., Van Hentenryck, P.: Dynamic vehicle routing with stochastic requests. In: International Joint Conference On Artificial Intelligence, vol. 18, pp. 1362–1363 (2003)
Bent, R.W., Van Hentenryck, P.: Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Oper. Res. 52, 977–987 (2004)
Berbeglia, G., Cordeau, J.-F., Laporte, G.: A hybrid tabu search and constraint programming algorithm for the dynamic dial-a-ride problem. INFORMS Journal on Computing (2011)
Berbeglia, G., Pesant, G., Rousseau, L.-M.: Checking the feasibility of dial-a-ride instances using constraint programming. Transportation Science 45, 399–412 (2011)
Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res. 40, 574–585 (1992)
Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing problem with stochastic demands. Journal of Mathematical Modelling and Algorithms 5, 91–110 (2006), doi:10.1007/s10852-005-9033-y
Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer (1997)
Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing 11(6), 4135–4151 (2011)
Bock, S.: Real-time control of freight forwarder transportation networks by integrating multimodal transport chains. European Journal of Operational Research 200(3), 733–746 (2010)
Branchini, R.M., Armentano, V.A., Løkketangen, A.: Adaptive granular local search heuristic for a dynamic vehicle routing problem. Computers and Operations Research 36(11), 2955–2968 (2009)
Caramia, M., Italiano, G., Oriolo, G., Pacifici, A., Perugia, A.: Routing a fleet of vehicles for dynamic, combined pickup and delivery services. In: Proceedings of the Symposium on Operation Research 2001, pp. 3–8. Springer (2001)
Chen, H.-K., Hsueh, C.-F., Chang, M.-S.: The real-time time-dependent vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review 42(5), 383–408 (2006)
Chen, Z.-L., Xu, H.: Dynamic column generation for dynamic vehicle routing with time windows. Transportation Science 40, 74–88 (2006)
Cordeau, J.-F., Laporte, G.: The dial-a-ride problem: models and algorithms. Annals of Operations Research 153, 29–46 (2007)
Cordeau, J.-F., Laporte, G., Savelsbergh, M.W., Vigo, D.: Vehicle routing. In: Barnhart, C., Laporte, G. (eds.) Transportation. Handbooks in Operations Research and Management Science, vol. 14, ch. 6, pp. 367–428. Elsevier (2007)
Crainic, T.G.: Parallel solution methods for vehicle routing problems. In: Golden, et al. (eds.), [35], p. 589 (2008)
Créput, J.-C., Hajjam, A., Koukam, A., Kuhn, O.: Self-organizing maps in population based metaheuristic to the dynamic vehicle routing problem. Journal of Combinatorial Optimization, 1–22 (2011)
Dror, M., Laporte, G., Trudeau, P.: Vehicle routing with stochastic demands: Properties and solution frameworks. Transportation Science 23(3), 166–176 (1989)
Fabri, A., Recht, P.: On dynamic pickup and delivery vehicle routing with several time windows and waiting times. Transportation Research Part B: Methodological 40(4), 335–350 (2006)
Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98, 23–47 (2003)
Flatberg, T., Hasle, G., Kloster, O., Nilssen, E.J., Riise, A.: Dynamic and stochastic vehicle routing in practice. In: Sharda, R., Voss, S., Zeimpekis, V., Tarantilis, C.D., Giaglis, G.M., Minis, I. (eds.) Dynamic Fleet Management. Operations Research/Computer Science Interfaces Series, vol. 38, pp. 41–63. Springer, US (2007), doi:10.1007/978-0-387-71722-7_3
Fleischmann, B., Gnutzmann, S., Sandvoss, E.: Dynamic vehicle routing based on online traffic information. Transportation Science 38, 420–433 (2004)
Fleischmann, B., Gnutzmann, S., Sandvoss, E.: Dynamic vehicle routing based on online traffic information. Transportation Science 38, 420–433 (2004)
Fu, L., Rilett, L.R.: Expected shortest paths in dynamic and stochastic traffic networks. Transportation Research Part B: Methodological 32(7), 499–516 (1998)
Gendreau, M., Guertin, F., Potvin, J.-Y., Taillard, E.: Parallel tabu search for real-time vehicle routing and dispatching. Transportation Science 33, 381–390 (1999)
Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. European Journal of Operational Research 88(1), 3–12 (1996)
Gendreau, M., Potvin, J.-Y., Bräumlaysy, O., Hasle, G., Løkketangen, A.: Metaheuristics for the vehicle routing problem and its extensions: A categorized bibliography. In: Golden, et al. (eds.) [35], pp. 143–169 (2008)
Goel, A.: Fleet Telematics. Operations Research/Computer Science Interfaces Series, vol. 40. Springer, US (2008)
Golden, B., Dearmon, J., Baker, E.: Computational experiments with algorithms for a class of routing problems. Computers & Operations Research 10(1), 47–59 (1983)
Golden, B., Raghavan, S., Wasil, E. (eds.): The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces Series, vol. 43. Springer (2008)
Gutjahr, W.J., Katzensteiner, S., Reiter, P.: A VNS Algorithm for Noisy Problems and its Application to Project Portfolio Analysis. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 93–104. Springer, Heidelberg (2007), doi:10.1007/978-3-540-74871-7_9
Haghani, A., Jung, S.: A dynamic vehicle routing problem with time-dependent travel times. Comput. Oper. Res. 32, 2959–2986 (2005)
Hvattum, L., Løkketangen, A.: Using scenario trees and progressive hedging for stochastic inventory routing problems. Journal of Heuristics 15, 527–557 (2009)
Hvattum, L.M., Løkketangen, A., Laporte, G.: Solving a dynamic and stochastic vehicle routing problem with a sample scenario hedging heuristic. Transportation Science 40(4), 421–438 (2006)
Hvattum, L.M., Løkketangen, A., Laporte, G.: A branch-and-regret heuristic for stochastic and dynamic vehicle routing problems. Networks 49(4), 330–340 (2007)
Hvattum, L.M., Løkketangen, A., Laporte, G.: Scenario tree-based heuristics for stochastic inventory-routing problems. INFORMS Journal on Computing 21(2), 268–285 (2009)
Ichoua, S., Gendreau, M., Potvin, J.-Y.: Exploiting knowledge about future demands for real-time vehicle dispatching. Transportation Science 40(2), 211–225 (2006)
Jaillet, P.: Probabilistic Traveling Salesman Problems. PhD thesis. Operations Research Center, MIT (February 1985)
Jih, W.-R., Yung-Jen Hsu, J.: Dynamic vehicle routing using hybrid genetic algorithms. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, vol. 1, pp. 453–458 (1999)
Johnson, D., McGeoch, L.: Experimental analysis of heuristics for the stsp. In: Gutin, G., Punnen, A., Du, D.-Z., Pardalos, P.M. (eds.) The Traveling Salesman Problem and Its Variations. Combinatorial Optimization, vol. 12, pp. 369–443. Springer, US (2004), doi:10.1007/0-306-48213-4_9
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (November 1995)
Kenyon, A.S., Morton, D.P.: Stochastic vehicle routing with random travel times. Transportation Science 37(1), 69–82 (2003)
Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Multi-Swarm Optimization for Dynamic Combinatorial Problems: A Case Study on Dynamic Vehicle Routing Problem. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 227–238. Springer, Heidelberg (2010)
Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59(3), 345–358 (1992)
Laporte, G.: Fifty years of vehicle routing. Transportation Science 43, 408–416 (2009)
Laporte, G., Musmanno, R., Vocaturo, F.: An adaptive large neighbourhood search heuristic for the capacitated arc-routing problem with stochastic demands. Transportation Science 44(1), 125–135 (2010)
Larsen, A.: The Dynamic Vehicle Routing Problem. PhD thesis. Technical University of Denmark, Kongens, Lyngby, Denmark (2000)
Larsen, A., Madsen, O., Solomon, M.: Partially dynamic vehicle routing - models and algorithms. Journal of the Operational Research Society 53, 637–646 (2002)
Larsen, A., Madsen, O.B., Solomon, M.M.: Classification of dynamic vehicle routing systems. In: Sharda, R., Voss, S., Zeimpekis, V., Tarantilis, C.D., Giaglis, G.M., Minis, I. (eds.) Dynamic Fleet Management. Operations Research/Computer Science Interfaces Series, vol. 38, pp. 19–40. Springer, US (2007)
Larsen, A., Madsen, O.B., Solomon, M.M.: Recent developments in dynamic vehicle routing systems. In: Sharda, R., Voss, S., Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces Series, vol. 43, pp. 199–218. Springer, US (2008) doi:10.1007/978-0-387-77778-8_9
Liao, T.-Y.: Tabu search algorithm for dynamic vehicle routing problems under real-time information. Transportation Research Record: Journal of the Transportation Research Board 1882(1), 140–149 (2004)
Liao, T.-Y., Hu, T.-Y.: An object-oriented evaluation framework for dynamic vehicle routing problems under real-time information. Expert Systems with Applications 38(10), 12548–12558 (2011)
Marinakis, Y., Marinaki, M.: A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem. Comput. Oper. Res. 37, 432–442 (2010)
Marinakis, Y., Migdalas, A., Pardalos, P.: Expanding neighborhood grasp for the traveling salesman problem. Computational Optimization and Applications 32, 231–257 (2005), doi:10.1007/s10589-005-4798-5
Mendoza, J.E., Castanier, B., Guéret, C., Medaglia, A.L., Velasco, N.: A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands. Computers & Operations Research 37(11), 1886–1898 (2010)
Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Operations Research 24(11), 1097–1100 (1997)
Montemanni, R., Gambardella, L., Rizzoli, A., Donati, A.: Ant colony system for a dynamic vehicle routing problem. Journal of Combinatorial Optimization 10, 327–343 (2005), doi:10.1007/s10878-005-4922-6
Parragh, S.N.: Ambulance Routing Problems with Rich Constraints and Multiple Objectives. PhD thesis. University of Vienna, Department of Business Administration (2009)
Parragh, S.N., Doerner, K.F., Hartl, R.F.: Variable neighborhood search for the dial-a-ride problem. Comput. Oper. Res. 37, 1129–1138 (2010)
Pessoa, A., de Arago, M.P., Uchoa, E.: Robust branch-cut-and-price algorithms for vehicle routing problems. In: Golden, et al. (eds.) [35], pp. 297–325 (2008)
Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.: A review of dynamic vehicle routing problems. Technical Report CIRRELT-2011-62. Centre interuniversitaire de recherche sur les reseaux denterprise, la logistique et le transport (CIRRELT), Montreal, Canada (2011)
Potvin, J.-Y., Xu, Y., Benyahia, I.: Vehicle routing and scheduling with dynamic travel times. Computers and Operations Research 33(4), 1129–1137 (2006), Part Special Issue: Optimization Days 2003
Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley (2007)
Powell, W.B., Topaloglu, H.: Stochastic programming in transportation and logistics. In: Ruszczynski, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 555–635. Elsevier (2003)
Regan, A.C., Mahmassani, H.S., Jaillet, P.: Evaluation of dynamic fleet management systems: Simulation framework. Transportation Research Record: Journal of the Transportation Research Board 1645(1), 176–184 (1998)
Rei, W., Gendreau, M., Soriano, P.: A hybrid monte carlo local branching algorithm for the single vehicle routing problem with stochastic demands. Transportation Science 44(1), 136–146 (2010)
Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 219–249. Springer, New York (2003), doi:10.1007/0-306-48056-5_8
Rockafellar, R.T., Wets, R.J.-B.: Scenarios and policy aggregation in optimization under uncertainty. Mathematics of Operations Research 16(1), 119–147 (1991)
Schilde, M., Doerner, K., Hartl, R.: Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports. Computers & Operations Research 38(12), 1719–1730 (2011)
Schorpp, S.: Dynamic Fleet Management for International Truck Transportation focusing on Occasional Transportation Tasks. PhD thesis. University of Augsburg, Faculty of Economics and Business Administration (2010)
Simão, H.P., Day, J., George, A.P., Gifford, T., Nienow, J., Powell, W.B.: An approximate dynamic programming algorithm for large-scale fleet management: A case application. Transportation Science 43(2), 178–197 (2009)
Stützle, T., Hoos, H.H.: Analyzing the run-time behaviour of iterated local search for the tsp. In: III Metaheuristics International Conference. Kluwer Academic Publishers (1999)
Thomas, B.W., White, I.: Chelsea C. Anticipatory route selection. Transportation Science 38(4), 473–487 (2004)
Toth, P., Vigo, D. (eds.): The vehicle routing problem. Society for Industrial and Applied Mathematics (2001)
Voss, S., Osman, I.H., Roucairol, C. (eds.): Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers, Norwell (1999)
Yang, W.-H., Mathur, K., Ballou, R.H.: Stochastic vehicle routing problem with restocking. Transportation Science 34, 99–112 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ritzinger, U., Puchinger, J. (2013). Hybrid Metaheuristics for Dynamic and Stochastic Vehicle Routing. In: Talbi, EG. (eds) Hybrid Metaheuristics. Studies in Computational Intelligence, vol 434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30671-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-30671-6_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30670-9
Online ISBN: 978-3-642-30671-6
eBook Packages: EngineeringEngineering (R0)