Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Empirical Study of the Relation between Community Structure and Transitivity

  • Chapter
Complex Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 424))

Abstract

One of the most prominent properties in real-world networks is the presence of a community structure, i.e. dense and loosely interconnected groups of nodes called communities. In an attempt to better understand this concept, we study the relationship between the strength of the community structure and the network transitivity (or clustering coefficient). Although intuitively appealing, this analysis was not performed before. We adopt an approach based on random models to empirically study how one property varies depending on the other. It turns out the transitivity increases with the community structure strength, and is also affected by the distribution of the community sizes. Furthermore, increasing the transitivity also results in a stronger community structure. More surprisingly, if a very weak community structure causes almost zero transitivity, the opposite is not true and a network with a close to zero transitivity can still have a clearly defined community structure. Further analytical work is necessary to characterize the exact nature of the identified relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69 (2004)

    Google Scholar 

  2. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pastor-Satorras, R., Rubi, M., Diaz-Guilera, A., Barabási, A.-L., Ravasz, E., Oltvai, Z.: Hierarchical Organization of Modularity in Complex Networks. In: Statistical Mechanics of Complex Networks, vol. 625, pp. 46–65. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008)

    Article  Google Scholar 

  5. Liu, Z.H.: Bambi: Epidemic spreading in community networks. Europhysics Letters 72, 315–321 (2005)

    Article  Google Scholar 

  6. Wang, G.-X., Qin, T.-G.: Impact of Community Structure on Network Efficiency and Communicability. In: 2010 International Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 2, pp. 485–488 (2010)

    Google Scholar 

  7. Watts, D., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 409–410 (1998)

    Article  Google Scholar 

  8. Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Phys. Rev. E 64, 046132 (2001)

    Article  Google Scholar 

  9. Boguña, M., Pastor-Satorras, R., Diaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Phys. Rev. E 70, 056122 (2004)

    Article  Google Scholar 

  10. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys Rev E 78, 046110 (2008)

    Article  Google Scholar 

  11. Newman, M.E.J.: Random Graphs with Clustering. Phys. Rev. Lett. 103 (2009)

    Google Scholar 

  12. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  13. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. PNAS USA 104, 36–41 (2007)

    Article  Google Scholar 

  14. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14, 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  15. Lancichinetti, A., Kivelä, M., Saramäki, J., Fortunato, S.: Characterizing the Community Structure of Complex Networks. PLoS ONE 5, e11976 (2010)

    Article  Google Scholar 

  16. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6, 161–179 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  18. Poncela, J., Gomez-Gardeñes, J., Florıa, L.M., Sanchez, A., Moreno, Y.: Complex Cooperative Networks from Evolutionary Preferential Attachment. PLoS ONE 3, e2449 (2008)

    Article  Google Scholar 

  19. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. P10008 (2008)

    Google Scholar 

  20. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. PNAS 105, 1118 (2008)

    Article  Google Scholar 

  21. Orman, G.K., Labatut, V., Cherifi, H.: Qualitative Comparison of Community Detection Algorithms. Communications in Computer and Information Science 167, 265–279 (2011)

    Article  Google Scholar 

  22. da Fontoura Costa, L., Oliveira Jr., O.N., Travieso, G., Rodrigues, R.A., Villas Boas, P.R., Antiqueira, L., Viana, M.P., da Rocha, L.E.C.: Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications (2008), arXiv 0711.3199

    Google Scholar 

  23. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical Properties of Community Structure in Large Social and Information Networks. In: WWW. ACM, Beijing (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keziban Orman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orman, K., Labatut, V., Cherifi, H. (2013). An Empirical Study of the Relation between Community Structure and Transitivity. In: Menezes, R., Evsukoff, A., González, M. (eds) Complex Networks. Studies in Computational Intelligence, vol 424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30287-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30287-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30286-2

  • Online ISBN: 978-3-642-30287-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics