Abstract
Current search engines present search results in an ordered list even if semantic technologies are used for analyzing user queries and the document contents. The semantic information that is used during the search result generation mostly remains hidden from the user although it significantly supports users in understanding why search results are considered as relevant for their individual query. The approach presented in this paper utilizes visualization techniques for offering visual feedback about the reasons the results were retrieved. It represents the semantic neighborhood of search results, the relations between results and query terms as well as the relevance of search results and the semantic interpretation of query terms for fostering search result comprehension. It also provides visual feedback for query enhancement. Therefore, not only the search results are visualized but also further information that occurs during the search processing is used to improve the visual presentation and to offer more transparency in search result generation. The results of an evaluation in a real application scenario show that the presented approach considerably supports users in assessment and decision-making tasks and alleviates information seeking in digital semantic knowledge bases.
Chapter PDF
Similar content being viewed by others
Keywords
References
Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web Revisited. IEEE Intelligent Systems 21(3), 96–101 (2006)
Fernandez, M., Lopez, V., Sabou, M., Uren, V., Vallet, D., Motta, E., Castells, P.: Semantic Search Meets the Web. In: 2008 IEEE International Conference on Semantic Computing, pp. 253–260 (2008)
Cutrell, E., Robbins, D., Dumais, S., Sarin, R.: Fast, flexible filtering with phlat. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 261–270 (2006)
Hearst, M.A.: Search User Interfaces. Cambridge University Press (2009)
White, R.W., Bilenko, M., Cucerzan, S.: Studying the Use of Popular Destinations to Enhance Web Search Interaction. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 159–166 (2007)
Stab, C., Breyer, M., Nazemi, K., Burkhardt, D., Hofmann, C., Fellner, D.W.: SemaSun: Visualization of Semantic Knowledge based on an improved Sunburst Visualization Metaphor. In: Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2010, pp. 911–919. AACE, Chesapeake (2010)
Stab, C., Nazemi, K., Fellner, D.W.: SemaTime - Timeline Visualization of Time-Dependent Relations and Semantics. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammound, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010, Part III. LNCS, vol. 6455, pp. 514–523. Springer, Heidelberg (2010)
Nazemi, K., Breyer, M., Hornung, C.: SeMap: A Concept for the Visualization of Semantics as Maps. In: Stephanidis, C. (ed.) UAHCI 2009, Part III. LNCS, vol. 5616, pp. 83–91. Springer, Heidelberg (2009)
Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications. A. K. Peters, Ltd., Natick (2010)
Jansen, B.J., Spink, A., Pedersen, J.O.: A Temporal Comparison of Altavista Web Searching. Journal of the American Society for Information Science and Technology 56(6), 559–570 (2005)
Jansen, B.J., Spink, A., Koshman, S.: Web Searcher Interaction with the Dogpile.com Metasearch Engine. Journal of the American Society for Information Science and Technology 58(5), 744–755 (2007)
Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human - Computer Interaction. John Wiley & Sons (2010)
Schenk, S., Saathoff, C., Staab, S., Scherp, A.: SemaPlorer - Interactive Semantic Exploration. Journal of Web Semantics: Science, Services and Agents on the World Wide Web 7(4), 298–304 (2009)
Heim, P., Lohmann, S., Stegemann, T.: Interactive Relationship Discovery via the Semantic Web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 303–317. Springer, Heidelberg (2010)
Microsoft Academic Search, http://academic.research.microsoft.com
Stoyanovich, J., Lodha, M., Mee, W., Ross, K.A.: SkylineSearch: semantic ranking and result visualization for pubmed. In: Proceedings of the 2011 International Conference on Management of Data, SIGMOD 2011, pp. 1247–1250 (2011)
Nguyen, T., Zhang, J.: A Novel Visualization Model for Web Search Results. IEEE Transactions on Visualization and Computer Graphics 12(5), 981–988 (2006)
Aula, A.: Enhancing the readability of search result summaries. In: Proceedings of HCI 2004, pp. 6–10 (2004)
Hearst, M.A., Divoli, H., Guturu, A., Ksikes, P., Nakov, M.A., Wooldridge, J.Y.: BioText Search Engine: beyond abstract search. Bioinformatics 23(16), 2196 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stab, C., Nazemi, K., Breyer, M., Burkhardt, D., Kohlhammer, J. (2012). Semantics Visualization for Fostering Search Result Comprehension. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds) The Semantic Web: Research and Applications. ESWC 2012. Lecture Notes in Computer Science, vol 7295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30284-8_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-30284-8_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30283-1
Online ISBN: 978-3-642-30284-8
eBook Packages: Computer ScienceComputer Science (R0)