Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7292))

Included in the following conference series:

Abstract

Tandem mass spectrometry is a well-known technique for identification of protein sequences from an ”in vitro” sample. To identify the sequences from spectra captured by a spectrometer, the similarity search in a database of hypothetical mass spectra is often used. For this purpose, a database of known protein sequences is utilized to generate the hypothetical spectra. Since the number of sequences in the databases grows rapidly over the time, several approaches have been proposed to index the databases of mass spectra. In this paper, we improve an approach based on the non-metric similarity search where the M-tree and the TriGen algorithm are employed for fast and approximative search. We show that preprocessing of mass spectra by clustering speeds up the identification of sequences more than 100× with respect to the sequential scan of the entire database. Moreover, when the protein candidates are refined by sequential scan in the postprocessing step, the whole approach exhibits precision similar to that of sequential scan over the entire database (over 90%).

This work was supported by Czech Science Foundation (GAČR) projects P202/11/0968, P202/12/P297, 201/09/H057 and by the Grant Agency of Charles University (GAUK) project Nr. 430711.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alfassi, Z.B.: On the Normalization of a Mass Spectrum for Comparison of Two Spectra. Journal of the Am. Soc. for Mass Spec. 15(3), 385–387 (2004)

    Article  Google Scholar 

  2. Beer, I., Barnea, E., Ziv, T., Admon, A.: Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics 4, 950–960 (2004)

    Article  Google Scholar 

  3. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. In: VLDB, pp. 426–435 (1997)

    Google Scholar 

  4. Dutta, D., Chen, T.: Speeding up Tandem Mass Spectrometry Database Search: Metric Embeddings and Fast Near Neighbor Search. Bioinf. 23(5), 612–618 (2007)

    Article  Google Scholar 

  5. Falkner, J.A., Falkner, J.W., Yocum, A.K., Andrews, P.C.: A spectral clustering approach to MS/MS identification of post-translational modifications. Journal of Proteome Research 7(11), 4614–4622 (2008)

    Article  Google Scholar 

  6. Flikka, K., et al.: Improving the reliability and throughput of mass spectrometry-based proteomics by spectrum quality filtering. Proteomics 6, 2086–2094 (2006)

    Article  Google Scholar 

  7. Flikka, K., et al.: Implementation and application of a versatile clustering tool for tandem mass spectrometry data. Proteomics 7, 3245–3258 (2007)

    Article  Google Scholar 

  8. Frank, A.M., et al.: Clustering millions of tandem mass spectra. Journal of Proteome Research 7(1), 113–122 (2008)

    Article  Google Scholar 

  9. Hinneburg, A., Keim, D.A.: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In: Proc. of KDD 1998, pp. 58–65 (1998)

    Google Scholar 

  10. Keller, A., et al.: Experimental Protein Mixture for Validating Tandem Mass Spectral Analysis. OMICS: A Journal of Integrative Biology 6(2), 207–212 (2002)

    Article  Google Scholar 

  11. Li, Y., et al.: Speeding up tandem mass spectrometry based database searching by peptide and spectrum indexing. Rapid Comm. Mass Spec. 24(6), 807–814 (2010)

    Article  Google Scholar 

  12. Liu, J., et al.: Methods for peptide identification by spectral comparison. Proteome Science 5(3) (2007)

    Google Scholar 

  13. Lu, B., Chen, T.: A Suffix Tree Approach to the Interpretation of Tandem Mass Spectra: Applications to Peptides of Non-specific Digestion and Post-translational Modifications. Bioinformatics 19(suppl.2), ii113–ii121 (2003)

    Google Scholar 

  14. Mao, R., Ramakrishnan, S.R., Nuckolls, G., Miranker, D.P.: An inverted index for mass spectra similarity query and comparison with a metric-space method: case study. In: SISAP 2010, pp. 93–99 (2010)

    Google Scholar 

  15. MSDB, http://www.proteomics.leeds.ac.uk/bioinf/

  16. Nesvizhskii, A.I.: A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. Journal of Proteomics 73(11), 2092–2123 (2010)

    Article  Google Scholar 

  17. Nesvizhskii, A.I., et al.: Dynamic Spectrum Quality Assessment and Iterative Computational Analysis of Shotgun Proteomic Data. Molecular & Cellular Proteomics 5, 652–670 (2006)

    Article  Google Scholar 

  18. Novák, J., Hoksza, D.: Parametrised Hausdorff Distance as a Non-Metric Similarity Model for Tandem Mass Spectrometry. In: CEUR Proc. DATESO, pp. 1–12 (2010)

    Google Scholar 

  19. Novák, J., Skopal, T., Hoksza, D., Lokoč, J.: Non-metric Similarity Search of Tandem Mass Spectra Including Posttranslational Modifications. Journal of Discrete Algorithms (2011), http://dx.doi.org/10.1016/j.jda.2011.10.003

  20. Park, C.Y., et al.: Rapid and accurate peptide identification from tandem mass spectra. Journal of Proteome research 7(7), 3022–3027 (2008)

    Article  Google Scholar 

  21. Pevzner, P.A., Mulyukov, Z., Dančík, V., Tang, C.L.: Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry. Genome Research 11(2), 290–299 (2001)

    Article  Google Scholar 

  22. Ramakrishnan, S.R., et al.: A Fast Coarse Filtering Method for Peptide Identification by Mass Spectrometry. Bioinformatics 22(12), 1524–1531 (2006)

    Article  Google Scholar 

  23. Renard, B.Y., et al.: When less can yield more - Computational preprocessing of MS/MS spectra for peptide identification. Proteomics 9, 4978–4984 (2009)

    Article  Google Scholar 

  24. Sadygov, R.G., et al.: Large-scale Database Searching Using Tandem Mass Spectra: Looking up the Answer in the Back of the Book. Nature Met. 1(3), 195–202 (2004)

    Article  Google Scholar 

  25. Salmi, J., Nyman, T.A., Nevalainen, O.S., Aittokallio, T.: Filtering strategies for improving protein identification in high-throughput MS/MS studies. Proteomics 9, 848–860 (2009)

    Article  Google Scholar 

  26. Skopal, T.: Unified Framework for Fast Exact and Approximate Search in Dissimilarity Spaces. ACM Transactions on Database Systems 32(4), 29 (2007)

    Article  Google Scholar 

  27. Skopal, T., Lokoč, J.: NM-Tree: Flexible Approximate Similarity Search in Metric and Non-metric Spaces. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 312–325. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Tabb, D.L., et al.: Similarity among Tandem Mass Spectra from Proteomic Experiments: Detection, Significance and Utility. Anal. Chem. 75(10) (2003)

    Google Scholar 

  29. Wang, J., et al.: Peptide identification from mixture tandem mass spectra. Molecular & Cellular Proteomics 9(7), 1476–1485 (2010)

    Article  Google Scholar 

  30. Xu, R., Wunsch, D.: Survey of Clustering Algorithms. IEEE Transactions on neural networks 16(3), 645–678 (2005)

    Article  Google Scholar 

  31. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems. Springer, USA (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Novák, J., Hoksza, D., Lokoč, J., Skopal, T. (2012). On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2012. Lecture Notes in Computer Science(), vol 7292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30191-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30191-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30190-2

  • Online ISBN: 978-3-642-30191-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics