Abstract
Developmental psychology is the study of human cognitive growth. However there exists a huge gap between the psychologist’s theories and knowledge of behaviour and our ability to implement developmental processes in autonomous agents. In this chapter we describe an approach towards developmental growth for robotics that utilises natural constraints in a general learning mechanism. The method, summarised as Lift-Constraint, Act, Saturate (LCAS), is described and illustrated with results from experiments. We discuss how this approach is grounded in the topics of sensory-motor abstraction, intrinsic motivation (as novelty), and staged learning, and our belief that robotics can learn much from infant psychology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angulo-Kinzler, R., Ulrich, B., Thelen, E. (2002). Three-month-old infants can select specific leg motor solutions. Motor Control, 6(1), 52–68.
Baraduc, P., Guigon, E., Burnod, Y. (2001). Recoding arm position to learn visuomotor transformations. Cerebral Cortex, 11, 906–917.
Becker, J. D. (1973). A model for the encoding of experiental information. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 396–434). San Francisco: W.H. Freeman and Company.
Berthouze, L., & Lungarella, M. (2004). Motor skill acquisition under environmental perturbations: on the necessity of alternate freezing and freeing of degrees of freedom. Adaptive Behavior, 12(1), 47–64.
Bodrova, E., & Leong, D. (2006). Tools of the mind: the Vygotskian approach to early childhood education. Columbus: Prentice Hall.
Braitenberg, V., & Schüz, A. (1991). Anatomy of the cortex: Statistics and geometry. Berlin: Springer.
Bruner, J. (1990). Acts of meaning. Cambridge: Harvard University Press.
Bullock, D., & Grossberg, S. (1988). Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychology Review, 95(1), 49–90.
Caligiore, D., Ferrauto, T., Parsi, D., Accornero, N., Capozza, M., Baldassare, G. (2008). Using motor babbling and Hebb rules for modeling the development of reaching with obstacles and grasping. In Proceedings of the international conference on cognitive systems (CogSys 2008), University of Karlsruhe, Karlsruhe, Germany, April 2–4, 2008.
Campbell, R., & Bickhard, M. (1992). Types of constraints on development: an interactivist approach. Developmental Review, 12(3), 311–338.
Carreira-Perpinan, M., Lister, R., Goodhill, G. (2005). A computational model for the development of multiple maps in primary visual cortex. Cerebral Cortex, 15(8), 1222–1233.
Casey, B., Galvan, A., Hare, T. (2005). Changes in cerebral functional organization during cognitive development. Current Opinion in Neurobiology, 15(2), 239–244.
Chao, F. (2009). Constraint lifting and its application in developmental robotics. PhD thesis, Department of Computer Science, Aberystwyth University, Wales.
Chao, F., Lee, M., Lee, J. (2010). A developmental algorithm for ocular motor coordination. Robotics and Autonomous Systems, 58, 239–248.
Clifton, R., Muir, D., Ashmead, D., Clarkson, M. (1993). Is visually guided reaching in early infancy a myth? Child Development, 64(4), 1099–1110.
Drescher, G. (1991). Made up minds: a constructivist approach to artificial intelligence. Cambridge: MIT.
Einarsdottir, H., Montani, F., Schultz, S. R. (2007). A mathematical model of receptive field reorganization following stroke. In IEEE 6th international conference on development and learning (pp. 211–216), Imperial College London, 11–13 July 2007, IEEE Computational Intelligence Society.
Foner, L., & Maes, P. (1994). Paying attention to what’s important: Using focus of attention to improve unsupervised learning. In Proceedings of the 3rd international conference on simulation of adaptive behaviour (pp. 256–265). Cambridge: MIT.
Gallahue, D. (1982). Understanding motor development in children. New York: Wiley.
Gasser, M., & Smith, L. B. (1998). Learning nouns and adjectives: a connectionist account. Language and cognitive processes, 13(2–3), 269–306.
Gomez, G., Lungarella, M., Hotz, P. E., Matsushita, K., Pfeifer, R. (2004). Simulating development in a real robot: on the concurrent increase of sensory, motor, and neural complexity. In L. Berthouze, H. Kozima, C. G. Prince, G. Sandini, G. Stojanov, G. Metta, C. Balkenius (Eds.), Proceedings of the fourth international workshop on epigenetic robotics: modeling cognitive development in robotic systems (vol. 117, pp. 119–122). Lund University Cognitive Studies. Lund: LUCS.
Goodhill, G., & Xu, J. (2005). The development of retinotectal maps: a review of models based on molecular gradients. Network: Computation in Neural Systems, 16(1), 5–34.
Hainline, L. (1998). How the visual system develops. In A. Slater (Ed.), Perceptual development: visual, auditory, and speech perception in infancy (pp. 5–50). Hove: Psychology.
Hendriks-Jensen, H. (1996). Catching ourselves in the act. Cambridge: MIT.
Hülse, M., & Lee, M. H. (2010). Adaptation of coupled sensorimotor mappings: an investigation towards developmental learning of humanoids. In S. Doncieux, B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, J.-B. Mouret (Eds.), From animals to animats 11. Lecture notes in computer science (vol. 6226, pp. 468–477). Berlin: Springer.
Hülse, M., McBride, S., Law, J., Lee, M. (2010a). Integration of active vision and reaching from a developmental robotics perspective. IEEE Transactions on Autonomous Mental Development, 2(4), 355–367.
Hülse, M., McBride, S., Lee, M. (2010b). Fast learning mapping schemes for robotic hand-eye coordination. Cognitive Computation, 2(1), 1–16.
Hülse, M., McBride, S., Lee, M. H. (2009a). Implementing inhibition of return; embodied visual memory for robotic systems. In L. Cañamero, P.-Y. Oudeyer, C. Balkenius (Eds) Proceedings of the ninth international conference on epigenetic robotics (vol. 146, pp. 213–214). Lund University Cognitive Studies. ISBN 978-91-977-380-7-1
Hülse, M., McBride, S., Lee, M. H. (2009b). Robotic hand-eye coordination without global reference: a biologically inspired learning scheme. In IEEE 8th international conference on development and learning, (ICDL) (pp. 1–6). New York: IEEE.
Johnson, M. (1990). Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience, 2(2), 81–95.
Kalaska, J. (1995). Reaching movements: implications of connectionist models. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 788–793). Cambridge: MIT.
Kalnins, I., & Bruner, J. (1973). The coordination of visual observation and instrumental behavior in early infancy. Perception, 2(3), 307–14.
Kaplan, F., & Oudeyer, P.-Y. (2003). Motivational principles for visual know-how development. In C. G. Prince, L. Berthouze, H. Kozima, D. Bullock, G. Stojanov, C. Balkenius (Eds.), Proceedings of the third international workshop on epigenetic robotics (vol. 101, pp. 73–80). Lund University Cognitive Studies. ISBN 91-974741-X.
Kaplan, F., & Oudeyer, P.-Y. (2007). In search of the neural circuits of intrinsic motivation. Frontiers in Neuroscience, 1(1), 225–236.
Keil, F. (1990). Constraints on constraints: Surveying the epigenetic landscape. Cognitive Science, 14(4), 135–168.
Law, J., Lee, M. H., Hülse, M., Tomassetti, A. (2011). The infant development timeline and its application to robot shaping. Adaptive Behaviour, 19(5), 335–358.
Lee, M. H., & Meng, Q. (2005). Psychologically inspired sensory-motor development in early robot learning. International Journal of Advanced Robotic Systems, 2(4), 325–334.
Lee, M. H., Meng, Q., Chao, F. (2006). A content-neutral approach for sensory-motor learning in developmental robotics. In F. Kaplan, P.-Y Oudeyer, A. Revel, P. Gaussier, J. Nadel, L. Berthouze, H. Kozima, C.G. Prince, C. Balkenius (Eds), Proceedings of the sixth international workshop on epigenetic robotics (vol. 128, pp. 55–62), September 20–22, 2006, Paris, France, Lund University Cognitive Studies. ISBN 91-974741-6-9
Lee, M. H., Meng, Q., Chao, F. (2007a). Developmental learning for autonomous robots. Robotics and Autonomous Systems, 55(9), 750–759.
Lee, M. H., Meng, Q., Chao, F. (2007b). Staged competence learning in developmental robotics. Adaptive Behaviour, 15(3), 241–255.
Lungarella, M., & Berthouze, L. (2002). Adaptivity through physical immaturity. In C.G. Prince, Y. Demiris, Y. Marom, H. Kozima, C. Balkenius (Eds) Proceedings of the second international workshop on epigenetic robotics (vol. 94, pp. 79–86). Lund University cognitive studies, August 10–11, 2002, Edinburgh, Scotland. Studies, 94. Lund: LUCS
Lungarella, M., Metta, G., Pfeifer, R., Sandini, G. (2003). Developmental robotics: a survey. Connection Science, 15(4), 151–190.
Mallot, H., Von Seelen, W., Giannakopoulos, F. (1990). Neural mapping and space-variant image processing. Neural Networks, 3(3), 245–263.
Martinetz, T. (1993). Competitive Hebbian learning rule forms perfectly topology preserving maps. In Proceedings of the ICANN’93, International conference on artificial neural networks (vol. 93, pp. 427–434). Springer.
Meng, Q., & Lee, M. H. (2007). Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks. Connection Science, 19(1), 25–52.
Meredith, M., Nemitz, J., Stein, B. (1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. Journal of Neuroscience, 7(10), 3215–3229.
Metta, G., Craighero, L., Fadiga, L., Ijspeert, A., Rosander, K., Sandini, G., Vernon, D., von Hofsten, C. (2009). A roadmap for the development of cognitive capabilities in humanoid robots. Technical Report D2.1, University of Genoa.
Nakayama, K., & Silverman, G. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320(6059), 264–265.
Neto, V., & Nehmzow, U. (2007). Visual novelty detection with automatic scale selection. Robotics and Autonomous Systems, 55(9), 693–701.
Oudeyer, P., Kaplan, F., Hafner, V. (2007). Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation, 11(2), 265–286.
Oztop, E., Bradley, N., Arbib, M. (2004). Infant grasp learning: a computational model. Experimental Brain Research, 158, 480–503.
Pfeifer, R., & Scheier, C. (1997). Sensory-motor coordination: the metaphor and beyond. Robotics and Autonomous Systems, 20(2), 157–178.
Pfeiffer, R., & Bongard, J. (2006). How the body shapes the way we think. Cambridge: MIT.
Piaget, J. (1973). The child’s conception of the world. London: Paladin.
Piek, J. P. (2002). The role of variability in early motor development. Infant Behavior and Development, 25(4), 452–465.
Piek, J. P., & Carman, R. (1994). Developmental profiles of spontaneous movements in infants. Early Human Development, 39(2), 109–126.
Pouget, A., & Snyder, L. (2000). Computational approaches to sensorimotor transformations. Nature Neuroscience, 3, 1192–1198.
Prescott, T., Montes González, F., Gurney, K., Humphries, M., Redgrave, P. (2006). A robot model of the basal ganglia: behavior and intrinsic processing. Neural Networks, 19(1), 31–61.
Prince, C., Helder, N., Hollich, G. (2005). Ongoing emergence: a core concept in epigenetic robotics. In L. Berthouze, F. Kaplan, H. Kozima, H. Yano, J. Konczak, G. Metta, J. Nadel, G. Sandini, G. Stojanov, C. Balkenius (Eds.) Proceedings of the fifth international workshop on epigenetic robotics (vol. 123, pp. 63–70). Lund University cognitive studies. ISBN 91-974741-4-2.
Redding, G., & Wallace, B. (2006). Generalization of prism adaptation. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 1006–1022.
Rochat, P. (2003). Five levels of self-awareness as they unfold early in life. Consciousness and Cognition, 12(4), 717–731.
Rochat, P., & Striano, T. (1999). Emerging self-exploration by 2-month-old infants. Developmental Science, 2(2), 206–218.
Rutkowska, J. (1994). Scaling up sensorimotor systems: constraints from human infancy. Adaptive Behaviour, 2, 349–373.
Schmidhuber, J. (1990). Learning algorithms for networks with internal and external feedback. In Proceedings of the 1990 connectionist models summer school (pp. 52–61), San Mateo, CA.
Smith, L., & Gasser, M. (2005). The development of embodied cognition: six lessons from babies. Artificial Life, 11(1–2), 13–29.
Spelke, E. (1998). Nativism, empiricism, and the origins of knowledge. Infant Behavior and Development, 21(2), 181–200.
Sporns, O., & Edelman, G. (1993). Solving Bernstein’s problem: a proposal for the development of coordinated movement by selection. Child Development, 64(4), 960–981.
Sterling, P. (1999). Deciphering the retina’s wiring diagram. Nature Neuroscience, 2, 851–852.
Thelen, E. (1995). Motor development. American Psychologist, 50, 79–95.
Thelen, E., & Whitmyer, V. (2005). Using dynamic field theory to conceptualize the interface of perception, cognition, and action. In J. Lockman & J. Rieser (Eds.), Action as an organizer of learning and development, Minnesota symposium on child psychology (vol. 33, pp. 243–277). New York: Lawrence Erlbaum Associates, Inc.
Tronick, E. (1972). Stimulus control and the growth of the infant’s effective visual field. Perception and Psychophysics, 11(5), 373–376.
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.
Ververs, I., Gelder-Hasker, V., Marja, R., De Vries, J., Hopkins, B., Van Geijn, H. (1998). Prenatal development of arm posture. Early Human Development, 51(1), 61–70.
Westermann, G., & Mareschal, D. (2004). From parts to wholes: mechanisms of development in infant visual object processing. Infancy, 5(2), 131–151.
Wurtz, R., & Goldberg, M. (1972). The primate superior colliculus and the shift of visual attention. Investigative Ophthalmology & Visual Science, 11(6), 441–450.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lee, M., Law, J., Hülse, M. (2013). A Developmental Framework for Cumulative Learning Robots. In: Baldassarre, G., Mirolli, M. (eds) Computational and Robotic Models of the Hierarchical Organization of Behavior. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39875-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-39875-9_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39874-2
Online ISBN: 978-3-642-39875-9
eBook Packages: Computer ScienceComputer Science (R0)