Abstract
We propose a multi-objective genetic algorithm method to prioritize state-based test cases to achieve several competing objectives such as budget and coverage of data flow information, while hopefully detecting faults as early as possible when executing prioritized test cases. The experimental results indicate that our approach is useful and effective: prioritizations quickly achieve maximum data flow coverage and this results in early fault detection; prioritizations perform much better than random orders with much smaller variance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Binder, R.V.: Testing Object-Oriented Systems - Models, Patterns, and Tools. Addison-Wesley (1999)
Briand, L.C., Labiche, Y., Wang, Y.: Using Simulation to Empirically Investigate Test Coverage Criteria. In: IEEE/ACM International Conference on Software Engineering, pp. 86–95 (2004)
Ammann, P., Offutt, A.J.: Introduction to Software Testing. Cambridge University Press (2008)
Briand, L.C., Labiche, Y., Lin, Q.: Improving the Coverage Criteria of UML State Machines Using Data Flow Analysis. Software Testing, Verification and Reliability 20, 177–207 (2010)
Chow, T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE Transactions on Software Engineering SE-4, 178–187 (1978)
Khalil, M., Labiche, Y.: On the Round Trip Path Testing Strategy. In: IEEE International Symposium on Software Reliability Engineering, pp. 388–397 (2010)
Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines - A Survey. Proceedings of the IEEE 84, 1090–1123 (1996)
Beizer, B.: Software Testing Techniques. Van Nostrand Reinhold, New York (1990)
Kalaji, A.S., Hierons, R., Swift, S.: An integrated search-based approach for automatic testing from extended finite state machine (EFSM) models. Information and Software Technology 53, 1297–1318 (2011)
Warmer, J., Kleppe, A.: The Object Constraint Language. Addison Wesley (2003)
Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey. Software Testing, Verification and Reliability 22, 67–120 (2012)
Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for regression testing. IEEE Transactions on Software Engineering 27, 929–948 (2001)
Li, Z., Harman, M., Hierons, R.: Search Algorithms for Regression Test Case Prioritization. IEEE Transactions on Software Engineering 33, 225–237 (2007)
Harman, M.: Making the Case for MORTO: Multi Objective Regression Test Optimization. In: IEEE International Conference on Software Testing, Verification and Validation Workshops, pp. 111–114 (2011)
Zitzler, E., Laumanss, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report, Swiss Federal Institute of Technology, Computer Engineering and Networks Laboratory (2001)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning. Addison Wesley (1989)
Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Progrmming-Modern concetps and practical applications. CRC Press (2009)
De Jong, K.A.: Learning with Genetic Algorithms: An Overview. Machine Learning 3, 121–138 (1988)
Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 16, 122–128 (1986)
Pargas, R.P., Harrold, M.J., Peck, R.: Test-Data Generation Using Genetic Algorithms. Software Testing, Verification and Reliability 9, 263–282 (1999)
Tiwari, A., Vergidis, K., Majeed, B.: Evolutionary Multiobjective Optimization of Business Processes. In: IEEE Congress on Evolutionary Computation, pp. 3091–3097 (2006)
Laumanns, M., Zitzler, E., Thiele, L.: On The Effects of Archiving, Elitism, an Density Based Selection in Evolutionary Multi-objective Optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 181–196. Springer, Heidelberg (2001)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3 (1999)
Rivas-Dávalos, F., Irving, M.R.: An Approach Based on the Strength Pareto Evolutionary Algorithm 2 for Power Distribution System Planning. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 707–720. Springer, Heidelberg (2005)
Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley-Interscience (1998)
Bui, L.T., Essam, D., Abbass, H.A., Green, D.: Performance analysis of evolutionary multi-objective optimization algorithms in noisy environment. In: Asia Pacific Symposium on Intelligent and Evolutionary Systems, pp. 29–39 (2004)
Elbaum, S., Malishevsky, A.G., Rothermel, G.: Incorporating varying test costs and fault severities into test case prioritization. In: ACM/IEEE International Conference on Software Engineering, pp. 329–338 (2001)
Hutchins, M., Froster, H., Goradia, T., Ostrand, T.: Experiments on the Effectiveness of Dataflow- and Controlflow-Based Test Adequacy Criteria. In: ACM/IEEE International Conference on Software Engineering, pp. 191–200 (1994)
Ma, Y.-S., Offutt, A.J., Kwon, Y.-R.: MuJava: A Mutation System for Java. In: ACM/IEEE International Conference on Software Engineering, pp. 827–830 (2006)
Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: Using Mutation Analysis for Assessing and Comparing Testing Coverage Criteria. IEEE Transactions on Software Engineering 32, 608–624 (2006)
Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML. Addison Wesley (2000)
Kargupta, H., Deb, K., Goldberg, D.E.: Ordering genetic algorithms and deception. In: Parallel Problem Solving from Nature, pp. 47–56 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Briand, L., Labiche, Y., Chen, K. (2013). A Multi-objective Genetic Algorithm to Rank State-Based Test Cases. In: Ruhe, G., Zhang, Y. (eds) Search Based Software Engineering. SSBSE 2013. Lecture Notes in Computer Science, vol 8084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39742-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-39742-4_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39741-7
Online ISBN: 978-3-642-39742-4
eBook Packages: Computer ScienceComputer Science (R0)