Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing Optimal Attack Strategies Using Unconstrained Influence Diagrams

  • Conference paper
Intelligence and Security Informatics (PAISI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8039))

Included in the following conference series:

Abstract

Attack graphs are a formalism for capturing the most important ways to compromise a system. They are used for evaluating risks and designing appropriate countermeasures. Analysis of attack graphs sometimes requires computing the optimal attack strategy that minimizes the expected cost of the attacker in case of stochastically failing actions. We point out several results in AI literature that are highly relevant to this problem, but remain unnoticed by security literature. We note the problem has been shown to be NP-hard and we present how the problem can be reduced to the problem of solving an unconstrained influence diagram (UID). We use an existing UID solver to assess the scalability of the approach, showing that it can be used to optimally solve attack graphs with up to 20 attack actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buldas, A., Stepanenko, R.: Upper bounds for adversaries’ utility in attack trees. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 98–117. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Sarraute, C., Richarte, G., Lucángeli Obes, J.: An algorithm to find optimal attack paths in nondeterministic scenarios. In: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, AISec 2011, pp. 71–80. ACM, New York (2011)

    Google Scholar 

  3. Greiner, R., Hayward, R., Jankowska, M., Molloy, M.: Finding optimal satisficing strategies for and-or trees. Artificial Intelligence 170(1), 19–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jensen, F.V., Vomlelová, M.: Unconstrained influence diagrams. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI 2002, pp. 234–241. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  5. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for network defense. In: Proceedings of the 22nd Annual Computer Security Applications Conference, ACSAC 2006, pp. 121–130. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  6. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph generation. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, pp. 336–345. ACM, New York (2006)

    Chapter  Google Scholar 

  7. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based probabilistic security metric. In: Atluri, V. (ed.) DAS 2008. LNCS, vol. 5094, pp. 283–296. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Homer, J., Ou, X., Schmidt, D.: A sound and practical approach to quantifying security risk in enterprise networks. Technical report, Kansas State University, Computing and Information Sciences Department (2009)

    Google Scholar 

  9. Luque, M., Nielsen, T.D., Jensen, F.V.: An anytime algorithm for evaluating unconstrained influence diagrams. In: Proc. 4th European Workshop on Probabilistic Graphical Models, pp. 177–184 (2008)

    Google Scholar 

  10. Isa, J., Lisy, V., Reitermanova, Z., Sykora, O.: Unconstrained influence diagram solver: Guido. In: 19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007, vol. 1, pp. 24–27. IEEE Computer Society (2007)

    Google Scholar 

  11. Iša, J., Reitermanová, Z., Sýkora, O.: On the complexity of general solution dags. In: Proceedings of the 2009 International Conference on Machine Learning and Applications, ICMLA 2009, pp. 673–678. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lisý, V., Píbil, R. (2013). Computing Optimal Attack Strategies Using Unconstrained Influence Diagrams. In: Wang, G.A., Zheng, X., Chau, M., Chen, H. (eds) Intelligence and Security Informatics. PAISI 2013. Lecture Notes in Computer Science, vol 8039. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39693-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39693-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39692-2

  • Online ISBN: 978-3-642-39693-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics