Nothing Special   »   [go: up one dir, main page]

Skip to main content

Functional Link Neural Network – Artificial Bee Colony for Time Series Temperature Prediction

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7971))

Included in the following conference series:

Abstract

Higher Order Neural Networks (HONNs) have emerged as an important tool for time series prediction and have been successfully applied in many engineering and scientific problems. One of the models in HONNs is a Functional Link Neural Network (FLNN) known to be conveniently used for function approximation and can be extended for pattern recognition with faster convergence rate and lesser computational load compared to ordinary feedforward network like the Multilayer Perceptron (MLP). In training the FLNN, the mostly used algorithm is the Backpropagation (BP) learning algorithm. However, one of the crucial problems with BP learning algorithm is that it can be easily gets trapped on local minima. This paper proposed an alternative learning scheme for the FLNN to be applied on temperature forecasting by using Artificial Bee Colony (ABC) optimization algorithm. The ABC adopted in this work is known to have good exploration and exploitation capabilities in searching optimal weight especially in numerical optimization problems. The result of the prediction made by FLNN-ABC is compared with the original FLNN architecture and toward the end we found that FLNN-ABC gives better result in predicting the next-day ahead prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, G.P.: Neural networks for classification: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 30(4), 451–462 (2000)

    Article  Google Scholar 

  2. Liao, S.-H., Wen, C.-H.: Artificial neural networks classification and clustering of methodologies and applications – literature analysis from 1995 to 2005. Expert Systems with Applications 32(1), 1–11 (2007)

    Article  Google Scholar 

  3. Patra, J.C., Pal, R.N.: A functional link artificial neural network for adaptive channel equalization. Signal Processing 43(2), 181–195 (1995)

    Article  MATH  Google Scholar 

  4. Chen, A.-S., Leung, M.T.: Regression neural network for error correction in foreign exchange forecasting and trading. Computers & Amp; Operations Research 31(7), 1049–1068 (2004)

    Article  MATH  Google Scholar 

  5. Giles, C.L., Maxwell, T.: Learning, invariance, and generalization in high-order neural networks. Applied Optics 26(23), 4972–4978 (1987)

    Article  Google Scholar 

  6. Pao, Y.H., Takefuji, Y.: Functional-link net computing: theory, system architecture, and functionalities. Computer 25(5), 76–79 (1992)

    Article  Google Scholar 

  7. Pao, Y.H.: Adaptive pattern recognition and neural networks (1989)

    Google Scholar 

  8. Dehuri, S., Cho, S.-B.: A comprehensive survey on functional link neural networks and an adaptive PSO–BP learning for CFLNN. Neural Computing & Applications 19(2), 187–205 (2010)

    Article  Google Scholar 

  9. Patra, J.C., Bornand, C.: Nonlinear dynamic system identification using Legendre neural network. In: The 2010 International Joint Conference on Neural Networks, IJCNN (2010)

    Google Scholar 

  10. Patra, J.C., Kot, A.C.: Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 32(4), 505–511 (2002)

    Article  Google Scholar 

  11. Abbas, H.M.: System Identification Using Optimally Designed Functional Link Networks via a Fast Orthogonal Search Technique. Journal of Computers 4(2) (2009)

    Google Scholar 

  12. Emrani, S., et al.: Individual particle optimized functional link neural network for real time identification of nonlinear dynamic systems. In: 2010 The 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), (2010)

    Google Scholar 

  13. Nanda, S.J., et al.: Improved Identification of Nonlinear MIMO Plants using New Hybrid FLANN-AIS Model. In: IEEE International Advance Computing Conference, IACC 2009 (2009)

    Google Scholar 

  14. Teeter, J., Mo-Yuen, C.: Application of functional link neural network to HVAC thermal dynamic system identification. IEEE Transactions on Industrial Electronics 45(1), 170–176 (1998)

    Article  Google Scholar 

  15. Raghu, P.P., Poongodi, R., Yegnanarayana, B.: A combined neural network approach for texture classification. Neural Networks 8(6), 975–987 (1995)

    Article  Google Scholar 

  16. Abu-Mahfouz, I.-A.: A comparative study of three artificial neural networks for the detection and classification of gear faults. International Journal of General Systems 34(3), 261–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, L.M., et al.: Image classification in remote sensing using functional link neural networks. In: Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation (1994)

    Google Scholar 

  18. Dehuri, S., Cho, S.-B.: Evolutionarily optimized features in functional link neural network for classification. Expert Systems with Applications 37(6), 4379–4391 (2010)

    Article  Google Scholar 

  19. Klaseen, M., Pao, Y.H.: The functional link net in structural pattern recognition. In: 1990 IEEE Region 10 Conference on Computer and Communication Systems, TENCON 1990 (1990)

    Google Scholar 

  20. Park, G.H., Pao, Y.H.: Unconstrained word-based approach for off-line script recognition using density-based random-vector functional-link net. Neurocomputing 31(1-4), 45–65 (2000)

    Article  Google Scholar 

  21. Majhi, R., Panda, G., Sahoo, G.: Development and performance evaluation of FLANN based model for forecasting of stock markets. Expert Systems with Applications 36(3, pt. 2), 6800–6808 (2009)

    Article  Google Scholar 

  22. Ghazali, R., Hussain, A.J., Liatsis, P.: Dynamic Ridge Polynomial Neural Network: Forecasting the univariate non-stationary and stationary trading signals. Expert Systems with Applications 38(4), 3765–3776 (2011)

    Article  Google Scholar 

  23. Misra, B.B., Dehuri, S.: Functional Link Artificial Neural Network for Classification Task in Data Mining. Journal of Computer Science 3(12), 948–955 (2007)

    Article  Google Scholar 

  24. Namatame, A., Veda, N.: Pattern classification with Chebyshev neural network. International Jounal of Neural Network 3, 23–31 (1992)

    Google Scholar 

  25. Haring, S., Kok, J.: Finding functional links for neural networks by evolutionary computation. In: Van de Merckt, T., et al. (eds.) Proceedings of the Fifth Belgian–Dutch Conference on Machine Learning, BENELEARN 1995, Brussels, Belgium, pp. 71–78 (1995)

    Google Scholar 

  26. Dehuri, S., Mishra, B.B., Cho, S.-B.: Genetic Feature Selection for Optimal Functional Link Artificial Neural Network in Classification. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 156–163. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Sierra, A., Macias, J.A., Corbacho, F.: Evolution of functional link networks. IEEE Transactions on Evolutionary Computation 5(1), 54–65 (2001)

    Article  Google Scholar 

  28. Widrow, B., Rumelhart, D.E., Lehr, M.A.: Neural networks: applications in industry, business and science. Commun. ACM 37(3), 93–105 (1994)

    Article  Google Scholar 

  29. Pham, D., et al.: The Bees Algorithm, in Technical Note, Manufacturing Engineering Centre, Cardiff University, UK (2005)

    Google Scholar 

  30. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization, Erciyes University, Engineering Faculty, Computer Science Department, Kayseri/Turkiye (2005)

    Google Scholar 

  31. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8, 687–697 (2007)

    Article  Google Scholar 

  32. Akay, B., Karaboga, D.: A modified Artificial Bee Colony algorithm for real-parameter optimization. Information Sciences (2010) (in press, corrected proof)

    Google Scholar 

  33. Karaboga, D., Ozturk, C.: A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Applied Soft Computing 11(1), 652–657 (2011)

    Article  Google Scholar 

  34. Chapter 2. Weather and Climate, http://www.nasa.gov

  35. Husaini, N.A., Ghazali, R., Mohd Nawi, N., Ismail, L.H.: Jordan pi-sigma neural network for temperature prediction. In: Kim, T.-h., Adeli, H., Robles, R.J., Balitanas, M. (eds.) UCMA 2011, Part II. CCIS, vol. 151, pp. 547–558. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  36. Mohmad Hassim, Y.M., Ghazali, R.: Using Artificial Bee Colony to Improve Functional Link Neural Network Training. Applied Mechanics and Materials 263, 2102–2108 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohmad Hassim, Y.M., Ghazali, R. (2013). Functional Link Neural Network – Artificial Bee Colony for Time Series Temperature Prediction. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39637-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39637-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39636-6

  • Online ISBN: 978-3-642-39637-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics