Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Cognitive Architecture Based on Dual Process Theory

  • Conference paper
Artificial General Intelligence (AGI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7999))

Included in the following conference series:

Abstract

This paper proposes a cognitive architecture based on Kahneman’s dual process theory [1]. The long-term memory is modeled as a transparent neural network that develops autonomously by interacting with the environment. The working memory is modeled as a buffer containing nodes of the long-term memory. Computations are defined as processes in which working memory content is transformed according to rules that are stored in the long-term memory. In this architecture, symbolic and subsymbolic reasoning steps can be combined and resource-bounded computations can be defined ranging from formal proofs to association chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kahneman, D.: A perspective on judgment and choice: mapping bounded rationality. American Psychologist 58, 697 (2003)

    Article  Google Scholar 

  2. Goertzel, B.: Perception processing for general intelligence: Bridging the symbolic/subsymbolic gap. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 79–88. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Strannegård, C., Häggström, O., Wessberg, J., Balkenius, C.: Transparent neural networks: Integrating concept formation and reasoning. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 302–311. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Strannegård, C., Ulfsbäcker, S., Hedqvist, D., Gärling, T.: Reasoning Processes in Propositional Logic. Journal of Logic, Language and Information 19(3), 283–314 (2010)

    Article  MATH  Google Scholar 

  5. Strannegård, C., Engström, F., Nizamani, A.R., Rips, L.: Reasoning about truth in first-order logic. Journal of Logic, Language and Information, 1–23 (2013)

    Google Scholar 

  6. Strannegård, C., Amirghasemi, M., Ulfsbäcker, S.: An anthropomorphic method for number sequence problems. Cognitive Systems Research (2012)

    Google Scholar 

  7. Wood, R., Baxter, P., Belpaeme, T.: A review of long-term memory in natural and synthetic systems. Adaptive Behavior 20(2), 81–103 (2012)

    Article  Google Scholar 

  8. Miller, G.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63(2), 81 (1956)

    Article  Google Scholar 

  9. Cowan, N.: Working memory capacity. Psychology Press, New York (2005)

    Book  Google Scholar 

  10. Baars, B., Gage, N.: Cognition, brain, and consciousness: Introduction to cognitive neuroscience. Academic Press (2010)

    Google Scholar 

  11. Wixted, J.: The psychology and neuroscience of forgetting. Annu. Rev. Psychol. 55, 235–269 (2004)

    Article  Google Scholar 

  12. Ebbinghaus, H.: Memory: A contribution to experimental psychology. Number 3. Teachers college, Columbia university (1913)

    Google Scholar 

  13. Harrison, J.: Handbook of practical logic and automated reasoning. Cambridge University Press (2009)

    Google Scholar 

  14. Rumelhart, D., McClelland, J.: Parallel distributed processing: Psychological and biological models, vol. 2. The MIT Press (1986)

    Google Scholar 

  15. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann (1988)

    Google Scholar 

  16. Hawkins, J., George, D.: Hierarchical temporal memory - concepts, theory, and terminology. Technical report, Numenta, Inc. (2006)

    Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Gärdenfors, P.: Conceptual Spaces. MIT Press (2000)

    Google Scholar 

  19. d’Avila Garcez, A.S., Lamb, L.C.: Cognitive algorithms and systems: Reasoning and knowledge representation. In: Cutsuridis, V., Hussain, A., Taylor, J.G. (eds.) Perception-Action Cycle. Springer Series in Cognitive and Neural Systems, pp. 573–600. Springer, New York (2011)

    Chapter  Google Scholar 

  20. Laird, J., Newell, A., Rosenbloom, P.: Soar: An Architecture for General Intelligence. Artificial Intelligence 33(3), 1–64 (1987)

    Article  Google Scholar 

  21. Anderson, J., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum, Mahwah (1998)

    Google Scholar 

  22. Bach, J.: The MicroPsi agent architecture. In: Proceedings of ICCM-5, International Conference on Cognitive Modeling, Bamberg, Germany, pp. 15–20 (2003)

    Google Scholar 

  23. Sun, R.: The importance of cognitive architectures: An analysis based on Clarion. Journal of Experimental & Theoretical Artificial Intelligence 19(2), 159–193 (2007)

    Article  Google Scholar 

  24. Gobet, F., Lane, P.C.: The CHREST architecture of cognition: the role of perception in general intelligence. Kitzelmann, E (2010)

    Google Scholar 

  25. Wang, P.: From nars to a thinking machine. In: Proceedings of the 2007 conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006, pp. 75–93. IOS Press, Amsterdam (2007)

    Google Scholar 

  26. Simon, H., Newell, A.: Human problem solving: The state of the theory in 1970. American Psychologist; American Psychologist 26(2), 145 (1971)

    Article  Google Scholar 

  27. Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems: Abstract properties and applications to term rewriting systems. Journal of the ACM (JACM) 27(4), 797–821 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Strannegård, C., von Haugwitz, R., Wessberg, J., Balkenius, C. (2013). A Cognitive Architecture Based on Dual Process Theory. In: Kühnberger, KU., Rudolph, S., Wang, P. (eds) Artificial General Intelligence. AGI 2013. Lecture Notes in Computer Science(), vol 7999. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39521-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39521-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39520-8

  • Online ISBN: 978-3-642-39521-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics