Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interval Algorithm for Set-Membership Identification of MIMO LTI System

  • Conference paper
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8032))

Abstract

Based on the assumption of Unknown-But–Bounded (UBB) noise, an interval algorithm is presented for set-membership parameter identification of a multiple-input multiple-output (MIMO) linear time-invariant (LTI) system. By virtue of interval mathematics, the objective of this study is to seek the minimal interval estimation (or hyper-rectangle) of parameters to be identified, which is compatible with the measured data and the bounded noise. The present algorithm can obtain not only the center estimations of parameters, but also the bounds of errors on them. Numerical example is used to illustrate its small computation efforts and higher accuracy by comparison with Fogel’s ellipsoidal algorithm and the least squares algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fogel, E.: System identification via membership set constraints with energy constrained noise. IEEE Transactions on Automatic Control AC 24(5), 752–758 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fogel, E., Huang, Y.F.: On the value of information in system identification-Bounded noise case. Automatica 18(2), 229–238 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Milanese, M., Belforte, G.: Estimation theory and uncertainty intervals evaluation in present of unknown but bounded errors: Linear families of models and estimators. IEEE Transactions on Automatic Control AC 27(2), 408–414 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cerone, V.: Feasible parameter set for linear models with bounded errors in all variables. Automatica 29(6), 1551–1555 (1993)

    Article  MATH  Google Scholar 

  5. Sun, X.F.: Set membership identification-Algorithm, Convergence, Robustness. (Ph D Thesis). Institute of Automation, Chinese Academy of Sciences Beijing (1994) (in Chinese)

    Google Scholar 

  6. Yue, Z.J.: Near-optimal input design for set-membership identification. Journal of PLA University of Science and Technology 2(2), 96–98 (2001) (in Chinese)

    Google Scholar 

  7. Garrido, R., Miranda, R.: DC servomechanism parameter identification: A closed loop input error approach. ISA Transactions 51(1), 42–49 (2012)

    Article  Google Scholar 

  8. Li, L., Liu, W.Y., Han, B.: Dynamical level set method for parameter identification of nonlinear parabolic distributed parameter systems. Commun. Nonlinear Sci. Numer. Simulat. 17(7), 2752–2765 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Vardakos, S., Gutierrez, M., Xia, C.C.: Parameter identification in numerical modeling of tunneling using the Differential Evolution Genetic Algorithm (DEGA). Tunnelling and Underground Space Technology 28, 109–123 (2012)

    Article  Google Scholar 

  10. Qiu, Z.P., Wang, X.J.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. International Journal of Solids and Structures 40(20), 5423–5439 (2003)

    Article  MATH  Google Scholar 

  11. Wang, X.J., Qiu, Z.P.: Interval Algorithm for Membership-Set Identification of Linear Time-invariant System. Chinese Journal of Theoretical and Applied Mechanics 37(6), 713–718 (2005)

    Google Scholar 

  12. Wang, W.Z., Cai, J.S.: Optimal Algorithms of Set Member Identification for Parameters of MIMO Systems. Control Theroy and Applications 14(3), 402–406 (1997)

    MathSciNet  Google Scholar 

  13. Yuan, Z.D., Xu, Q.N.: Set Membership Identification for the Parameters of MIMO System. Control Theory and Applications 11(4), 404–412 (1994)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Yang, C., Zhang, B., Wang, L. (2013). Interval Algorithm for Set-Membership Identification of MIMO LTI System. In: Qin, Z., Huynh, VN. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2013. Lecture Notes in Computer Science(), vol 8032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39515-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39515-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39514-7

  • Online ISBN: 978-3-642-39515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics