Nothing Special   »   [go: up one dir, main page]

Skip to main content

Australian Sign Language Recognition Using Moment Invariants

  • Conference paper
Intelligent Computing Theories and Technology (ICIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7996))

Included in the following conference series:

Abstract

Human Computer Interaction is geared towards seamless human machine integration without the need for LCDs, Keyboards or Gloves. Systems have already been developed to react to limited hand gestures especially in gaming and in consumer electronics control. Yet, it is a monumental task in bridging the well-developed sign languages in different parts of the world with a machine to interpret the meaning. One reason is the sheer extent of the vocabulary used in sign language and the sequence of gestures needed to communicate different words and phrases. Auslan the Australian Sign Language is comprised of numbers, finger spelling for words used in common practice and a medical dictionary. There are 7415 words listed in Auslan website. This research article tries to implement recognition of numerals using a computer using the static hand gesture recognition system developed for consumer electronics control at the University of Wollongong in Australia. The experimental results indicate that the numbers, zero to nine can be accurately recognized with occasional errors in few gestures. The system can be further enhanced to include larger numerals using a dynamic gesture recognition system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.auslan.org.au/about/history

  2. Johnston, T.: Signs of Australia: A new dictionary of Auslan, North Rocks. North Rocks Press, NSW (1998)

    Google Scholar 

  3. Johnston, T., Schembri, A.: Australian Sign Language: An introduction to sign language linguistics. Cambridge University Press (2007)

    Google Scholar 

  4. Premaratne, P., Nguyen, Q.: Consumer Electronics Control System based on Hand Gesture Moment Invariants. IET Computer Vision 1(1), 35–41 (2007)

    Article  Google Scholar 

  5. Premaratne, P., Ajaz, S., Premaratne, M.: Hand Gesture Tracking and Recognition System Using Lucas-Kanade Algorithm for Control of Consumer Electronics. Neurocomputing Journal (2012), How to Cite or Link Using DOI, http: ==dx:doi:org=10:1016=j:neucom:2011:11:039

    Google Scholar 

  6. Premaratne, P., Ajaz, S., Premaratne, M.: Hand gesture tracking and recognition system for control of consumer electronics. In: Huang, D.-S., Gan, Y., Gupta, P., Gromiha, M.M. (eds.) ICIC 2011. LNCS, vol. 6839, pp. 588–593. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Premaratne, P., Premaratne, M.: New structural similarity measure for image comparison. In: Huang, D.-S., Gupta, P., Zhang, X., Premaratne, P. (eds.) ICIC 2012. CCIS, vol. 304, pp. 292–297. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Premaratne, P., Premaratne, M.: Image similarity index based on moment invariants of approximation level of discrete wavelet transform. Electronics Letters 48-23, 1465–1467 (2012)

    Article  Google Scholar 

  9. Harding, P.R.G., Ellis, T.: Recognizing hand gesture using Fourier descriptors. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, pp. 286–289 (2004)

    Google Scholar 

  10. Ho, S., Greig, G.: Space on image profiles about an object boundary. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 564–575. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Zhongliang, Q., Wenjun, W.: Automatic ship classification by superstructure moment invariants and two-stage classifier. In: ICCS/ISITA 1992 Communications on the Move (1992)

    Google Scholar 

  12. Hu, M.K.: Visual Pattern Recognition by Moment Invariants. IRE Trans. Info. Theory IT8, 179–187 (1962)

    Google Scholar 

  13. http://spectrum.ieee.org/riskfactor/computing/networks/face-recognition-failed-to-find-boston-bombers

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Premaratne, P., Yang, S., Zou, Z., Vial, P. (2013). Australian Sign Language Recognition Using Moment Invariants. In: Huang, DS., Jo, KH., Zhou, YQ., Han, K. (eds) Intelligent Computing Theories and Technology. ICIC 2013. Lecture Notes in Computer Science(), vol 7996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39482-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39482-9_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39481-2

  • Online ISBN: 978-3-642-39482-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics