Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classifying Aging Genes into DNA Repair or Non-DNA Repair-Related Categories

  • Conference paper
Intelligent Computing Theories and Technology (ICIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7996))

Included in the following conference series:

Abstract

The elderly population in almost every country is growing faster than ever before. However, our knowledge about the aging process is still limited despite decades of studies on this topic. In this report, we focus on the gradual accumulation of DNA damage in cells, which is a key aspect of the aging process and one that underlies age-dependent functional decline in cells, tissues, and organs. To achieve the goal of discriminating DNA-repair from non-DNA-repair genes among currently known genes related to human aging, four machine learning methods were employed: Decision Trees, Naïve Bayes, Support Vector Machine, and Random Forest (RF). Among the four methods, the RF algorithm achieved a total accuracy (ACC) of 97.32% and an area under receiver operating characteristic (AUC) of 0.98. These estimates were based on 18 selected attributes, including 10 Gene Ontology and 8 Protein-Protein Interaction (PPI) attributes. A predictive model built with only 15 PPI attributes achieved performance levels of ACC= 96.56% and AUC=0.95. Systems biology analyses showed that the features of these attributes were related to cancer, genetic, developmental, and neurological disorders, as well as DNA replication/recombination/repair, cell cycle, cell death, and cell function maintenance. The results of this study indicate that genes indicative of aging may be successfully classified into DNA repair and non-DNA repair genes and such successful classification may help identify pathways and biomarkers that are important to the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sahin, E., Depinho, R.A.: Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464, 520–528 (2010)

    Article  Google Scholar 

  2. Finkel, T., Serrano, M., Blasco, M.A.: The common biology of cancer and ageing. Nature 448, 767–774 (2007)

    Article  Google Scholar 

  3. Tse, M.T.: Brain ageing: a fine balance. Nat. Rev. Neurosci. 13, 222 (2012)

    Google Scholar 

  4. Nijnik, A., Woodbine, L., Marchetti, C., Dawson, S., Lambe, T., Liu, C., Rodrigues, N.P., Crockford, T.L., Cabuy, E., Vindigni, A., Enver, T., Bell, J.I., Slijepcevic, P., Goodnow, C.C., Jeggo, P.A., Cornall, R.J.: DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447, 686–690 (2007)

    Article  Google Scholar 

  5. Thoms, K.M., Baesecke, J., Emmert, B., Hermann, J., Roedling, T., Laspe, P., Leibeling, D., Truemper, L., Emmert, S.: Functional DNA repair system analysis in haematopoietic progenitor cells using host cell reactivation. Scand J. Clin Lab Invest. 67, 580–588 (2007)

    Article  Google Scholar 

  6. Lu, T., Pan, Y., Kao, S.Y., Li, C., Kohane, I., Chan, J., Yankner, B.A.: Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004)

    Article  Google Scholar 

  7. Freitas, A.A., Vasieva, O., de Magalhaes, J.P.: A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related. BMC Genomics 12, 27 (2011)

    Article  Google Scholar 

  8. Kenyon, C.J.: The genetics of ageing. Nature 464, 504–512 (2010)

    Article  Google Scholar 

  9. de Magalhaes, J.P., Budovsky, A., Lehmann, G., Costa, J., Li, Y., Fraifeld, V., Church, G.M.: The Human Ageing Genomic Resources: online databases and tools for biogerontologists. Aging Cell 8, 65–72 (2009)

    Article  Google Scholar 

  10. Jiang, H., Ching, W.K.: Classifying DNA repair genes by kernel-based support vector machines. Bioinformation 7, 257–263 (2011)

    Article  Google Scholar 

  11. Fang, J.W., Dong, Y.H., Williams, T.D., Lushington, G.H.: Feature selection in validating mass spectrometry database search results. J. Bioinform Comput. Biol. 6, 223–240 (2008)

    Article  Google Scholar 

  12. Wang, L., Yang, M.Q., Yang, J.Y.: Prediction of DNA-binding residues from protein sequence information using random forests. BMC Genomics 10(suppl. 1), S1 (2009)

    Google Scholar 

  13. Sikic, M., Tomic, S., Vlahovicek, K.: Prediction of protein-protein interaction sites in sequences and 3D structures by random forests. PLoS Comput. Biol. 5, e1000278 (2009)

    Google Scholar 

  14. Li, Y., Fang, Y., Fang, J.: Predicting Residue-Residue Contacts Using Random Forest Models. Bioinformatics 27, 3379–3384 (2011)

    Article  MathSciNet  Google Scholar 

  15. Wood, R.D., Mitchell, M., Sgouros, J., Lindahl, T.: Human DNA repair genes. Science 291, 1284–1289 (2001)

    Article  Google Scholar 

  16. Wood, R.D., Mitchell, M., Lindahl, T.: Human DNA repair genes, 2005. Mutat Res. 577, 275–283 (2005)

    Article  Google Scholar 

  17. Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., Balakrishnan, L., Marimuthu, A., Banerjee, S., Somanathan, D.S., Sebastian, A., Rani, S., Ray, S., Harrys Kishore, C.J., Kanth, S., Ahmed, M., Kashyap, M.K., Mohmood, R., Ramachandra, Y.L., Krishna, V., Rahiman, B.A., Mohan, S., Ranganathan, P., Ramabadran, S., Chaerkady, R., Pandey, A.: Human Protein Reference Database–2009 update. Nucleic Acids Research 37, D767–D772 (2009)

    Article  Google Scholar 

  18. Stark, C., Breitkreutz, B.J., Chatr-Aryamontri, A., Boucher, L., Oughtred, R., Livstone, M.S., Nixon, J., Van Auken, K., Wang, X., Shi, X., Reguly, T., Rust, J.M., Winter, A., Dolinski, K., Tyers, M.: The BioGRID Interaction Database: 2011 update. Nucleic Acids Research 39, D698–D704 (2011)

    Article  Google Scholar 

  19. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11 (2009)

    Google Scholar 

  20. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  21. Li, Y., Fang, J.: Distance-dependent statistical potentials for discriminating thermophilic and mesophilic proteins. Biochem Biophys Res. Commun. 396, 736–741 (2010)

    Article  Google Scholar 

  22. Lim, D.-S., Kim, S.-T., Xu, B., Maser, R.S., Lin, J., Petrini, J.H.J., Kastan, M.B.: ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000)

    Article  Google Scholar 

  23. Falck, J., Coates, J., Jackson, S.P.: Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005)

    Article  Google Scholar 

  24. Lombard, D.B., Chua, K.F., Mostoslavsky, R., Franco, S., Gostissa, M., Alt, F.W.: DNA repair, genome stability, and aging. Cell 120, 497–512 (2005)

    Article  Google Scholar 

  25. Branzei, D., Foiani, M.: Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308 (2008)

    Article  Google Scholar 

  26. Bartek, J., Lukas, J.: DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007)

    Article  Google Scholar 

  27. Zlatanou, A., Despras, E., Braz-Petta, T., Boubakour-Azzouz, I., Pouvelle, C., Stewart, G.S., Nakajima, S., Yasui, A., Ishchenko, A.A., Kannouche, P.L.: The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol eta in response to oxidative DNA damage in human cells. Mol Cell 43, 649–662 (2011)

    Article  Google Scholar 

  28. Aggarwal, M., Sommers, J.A., Shoemaker, R.H., Brosh Jr., R.M.: Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proceedings of the National Academy of Sciences of the United States of America 108, 1525–1530 (2011)

    Article  Google Scholar 

  29. Rodrı, X., Guez-López, A.M., Jackson, D.A., Nehlin, J.O., Iborra, F., Warren, A.V., Cox, L.S.: Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner’s syndrome, and an essential replication factor, PCNA. Mechanisms of Ageing and Development 124, 167–174 (2003)

    Article  Google Scholar 

  30. Chen, L., Huang, S., Lee, L., Davalos, A., Schiestl, R.H., Campisi, J., Oshima, J.: WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2, 191–199 (2003)

    Article  Google Scholar 

  31. Hasty, P., Vijg, J.: Accelerating aging by mouse reverse genetics: a rational approach to understanding longevity. Aging Cell 3, 55–65 (2004)

    Article  Google Scholar 

  32. Multani, A.S., Chang, S.: WRN at telomeres: implications for aging and cancer. J. Cell Sci. 120, 713–721 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, Y., Wang, X., Michaelis, E.K., Fang, J. (2013). Classifying Aging Genes into DNA Repair or Non-DNA Repair-Related Categories. In: Huang, DS., Jo, KH., Zhou, YQ., Han, K. (eds) Intelligent Computing Theories and Technology. ICIC 2013. Lecture Notes in Computer Science(), vol 7996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39482-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39482-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39481-2

  • Online ISBN: 978-3-642-39482-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics