Abstract
This paper presents an integration framework for image segmentation. The proposed method is based on Fuzzy c-means clustering (FCM) and level set method. In this framework, firstly Chan and Vese’s level set method (CV) and Bayes classifier based on mixture of density models are utilized to find a prior membership value for each pixel. Then, a supervised kernel based fuzzy c-means clustering (SKFCM) algorithm assisted by prior membership values is developed for final segmentation.
The performance of our approach has been evaluated using high-throughput fluorescence microscopy colon cancer cell images, which are commonly used for the study of many normal and neoplastic procedures. The experimental results show the superiority of the proposed clustering algorithm in comparison with several existing techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi Formulation. Journal of Computational Physics 79, 12–49
Malladi, R., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Transaction on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)
Chan, T.F., Vese, L.A.: Active Contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)
Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. Journal of Cybernetics 3(3), 32–57 (1973)
Bezdek, J.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)
Liew, A.W.C., Leung, S.H., Lau, W.H.: Fuzzy image clustering incorporating spatial continuity. IEE Proceedings-Vision Image and Signal Processing 147(2), 185–192 (2000)
Liew, A.W.C., Yan, H.: An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Transactions on Medical Imaging 22(9), 1063–1075 (2003)
Liew, A.W.C., Leung, S.H., Lau, W.H.: Segmentation of color lip images by spatial fuzzy clustering. IEEE Transactions on Fuzzy Systems 11(4), 542–549 (2003)
Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Transactions on Neural Network 13(3), 780–784 (2002)
Mumford, Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42, 577–685 (1989)
Morel, J.M., Solimini, S.: Segmentation of Images by Variational Methods: A Constructive Approach. Madrid, Spain: Revista Matematica Universidad Complutense de Madrid 1, 169–182 (1988)
Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.: A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems 13(4), 517–530 (2005)
Höppner, F., Klawonn, F.: A contribution to convergence theory of fuzzy c-means and derivatives. IEEE Transactions on Fuzzy Systems 11(5), 682–694 (2003)
Abonyi, J., Szeifert, F.: Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters 24, 2195–2207 (2003)
Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., Golland, P., Sabatini, D.M.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 7, R100 (2006)
Chuang, K.S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics 30, 9–156 (2000)
Li, B.N., Chui, C.K., Chang, S., Ong, S.H.: Integrating spatial fuzzy clustering and level set methods for automated medical image segmentation. Computers in Biology and Medicine 41, 1–10 (2011)
Li, C., Kao, C., Gore, J., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing 17, 1940–1949 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gharipour, A., Liew, A.WC. (2013). Colon Cell Image Segmentation Based on Level Set and Kernel-Based Fuzzy Clustering. In: Huang, DS., Jo, KH., Zhou, YQ., Han, K. (eds) Intelligent Computing Theories and Technology. ICIC 2013. Lecture Notes in Computer Science(), vol 7996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39482-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-39482-9_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39481-2
Online ISBN: 978-3-642-39482-9
eBook Packages: Computer ScienceComputer Science (R0)