Nothing Special   »   [go: up one dir, main page]

Skip to main content

Colon Cell Image Segmentation Based on Level Set and Kernel-Based Fuzzy Clustering

  • Conference paper
Intelligent Computing Theories and Technology (ICIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7996))

Included in the following conference series:

Abstract

This paper presents an integration framework for image segmentation. The proposed method is based on Fuzzy c-means clustering (FCM) and level set method. In this framework, firstly Chan and Vese’s level set method (CV) and Bayes classifier based on mixture of density models are utilized to find a prior membership value for each pixel. Then, a supervised kernel based fuzzy c-means clustering (SKFCM) algorithm assisted by prior membership values is developed for final segmentation.

The performance of our approach has been evaluated using high-throughput fluorescence microscopy colon cancer cell images, which are commonly used for the study of many normal and neoplastic procedures. The experimental results show the superiority of the proposed clustering algorithm in comparison with several existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi Formulation. Journal of Computational Physics 79, 12–49

    Google Scholar 

  2. Malladi, R., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Transaction on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)

    Article  Google Scholar 

  3. Chan, T.F., Vese, L.A.: Active Contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  4. Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. Journal of Cybernetics 3(3), 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezdek, J.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  6. Liew, A.W.C., Leung, S.H., Lau, W.H.: Fuzzy image clustering incorporating spatial continuity. IEE Proceedings-Vision Image and Signal Processing 147(2), 185–192 (2000)

    Article  Google Scholar 

  7. Liew, A.W.C., Yan, H.: An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Transactions on Medical Imaging 22(9), 1063–1075 (2003)

    Article  Google Scholar 

  8. Liew, A.W.C., Leung, S.H., Lau, W.H.: Segmentation of color lip images by spatial fuzzy clustering. IEEE Transactions on Fuzzy Systems 11(4), 542–549 (2003)

    Article  Google Scholar 

  9. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Transactions on Neural Network 13(3), 780–784 (2002)

    Article  Google Scholar 

  10. Mumford, Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Morel, J.M., Solimini, S.: Segmentation of Images by Variational Methods: A Constructive Approach. Madrid, Spain: Revista Matematica Universidad Complutense de Madrid 1, 169–182 (1988)

    MathSciNet  MATH  Google Scholar 

  12. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.: A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems 13(4), 517–530 (2005)

    Article  MathSciNet  Google Scholar 

  13. Höppner, F., Klawonn, F.: A contribution to convergence theory of fuzzy c-means and derivatives. IEEE Transactions on Fuzzy Systems 11(5), 682–694 (2003)

    Article  Google Scholar 

  14. Abonyi, J., Szeifert, F.: Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters 24, 2195–2207 (2003)

    Article  MATH  Google Scholar 

  15. http://www.broadinstitute.org/bbbc

  16. Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., Golland, P., Sabatini, D.M.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 7, R100 (2006)

    Article  Google Scholar 

  17. Chuang, K.S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics 30, 9–156 (2000)

    Article  Google Scholar 

  18. Li, B.N., Chui, C.K., Chang, S., Ong, S.H.: Integrating spatial fuzzy clustering and level set methods for automated medical image segmentation. Computers in Biology and Medicine 41, 1–10 (2011)

    Article  Google Scholar 

  19. Li, C., Kao, C., Gore, J., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing 17, 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gharipour, A., Liew, A.WC. (2013). Colon Cell Image Segmentation Based on Level Set and Kernel-Based Fuzzy Clustering. In: Huang, DS., Jo, KH., Zhou, YQ., Han, K. (eds) Intelligent Computing Theories and Technology. ICIC 2013. Lecture Notes in Computer Science(), vol 7996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39482-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39482-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39481-2

  • Online ISBN: 978-3-642-39482-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics