Nothing Special   »   [go: up one dir, main page]

Skip to main content

Behavior of the Soft Constraints Method Applied to Interval Type-2 Fuzzy Linear Programming Problems

  • Conference paper
Intelligent Computing Theories and Technology (ICIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7996))

Included in the following conference series:

Abstract

This paper presents some considerations when applying the Zimmermann soft constraints method to linear programming with Interval Type-2 fuzzy constraints. A descriptive study of the behavior of the method is performed using an example with an explanation of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Management Science 17(1), 141–164 (1970)

    MathSciNet  Google Scholar 

  2. Figueroa, J.C.: Linear programming with interval type-2 fuzzy right hand side parameters. In: 2008 Annual Meeting of the IEEE North American Fuzzy Information Processing Society (NAFIPS) (2008)

    Google Scholar 

  3. Figueroa, J.C.: Solving fuzzy linear programming problems with interval type-2 RHS. In: 2009 Conference on Systems, Man and Cybernetics, pp. 1–6. IEEE (2009)

    Google Scholar 

  4. Figueroa, J.C.: Interval type-2 fuzzy linear programming: Uncertain constraints. In: IEEE Symposium Series on Computational Intelligence, pp. 1–6. IEEE (2011)

    Google Scholar 

  5. Figueroa, J.C.: A general model for linear programming with interval type-2 fuzzy technological coefficients. In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp. 1–6. IEEE (2012)

    Google Scholar 

  6. Figueroa-García, J.C., Hernandez, G.: Computing Optimal Solutions of a Linear Programming Problem with Interval Type-2 Fuzzy Constraints. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part III. LNCS, vol. 7208, pp. 567–576. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Figueroa, J.C., Kalenatic, D., Lopez, C.A.: Multi-period mixed production planning with uncertain demands: Fuzzy and interval fuzzy sets approach. Fuzzy Sets and Systems 206(1), 21–38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karnik, N.N., Mendel, J.M.: Operations on type-2 fuzzy sets. Fuzzy Sets and Systems 122, 327–348 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. Fuzzy Sets and Systems 17(10), 643–658 (1999)

    Google Scholar 

  10. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems 8(5), 535–550 (2000)

    Article  Google Scholar 

  11. Melgarejo, M.: Implementing Interval Type-2 Fuzzy processors. IEEE Computational Intelligence Magazine 2(1), 63–71 (2007)

    Article  Google Scholar 

  12. Melgarejo, M.A.: A Fast Recursive Method to compute the Generalized Centroid of an Interval Type-2 Fuzzy Set. In: Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp. 190–194. IEEE (2007)

    Google Scholar 

  13. Mendel, J.M.: Uncertain rule-based fuzzy logic systems: Introduction and new directions. Prentice Hall (1994)

    Google Scholar 

  14. Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems 10(2), 117–127 (2002)

    Article  Google Scholar 

  15. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Transactions on Fuzzy Systems 14(6), 808–821 (2006)

    Article  Google Scholar 

  16. Zimmermann, H.J.: Fuzzy programming and Linear Programming with several objective functions. Fuzzy Sets and Systems 1(1), 45–55 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zimmermann, H.J., Fullér, R.: Fuzzy Reasoning for solving fuzzy Mathematical Programming Problems. Fuzzy Sets and Systems 60(1), 121–133 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Figueroa-García, J.C., Hernández, G. (2013). Behavior of the Soft Constraints Method Applied to Interval Type-2 Fuzzy Linear Programming Problems. In: Huang, DS., Jo, KH., Zhou, YQ., Han, K. (eds) Intelligent Computing Theories and Technology. ICIC 2013. Lecture Notes in Computer Science(), vol 7996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39482-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39482-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39481-2

  • Online ISBN: 978-3-642-39482-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics