Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Learning Classifier-Based Approach to Aligning Data Items and Labels

  • Conference paper
Big Data (BNCOD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7968))

Included in the following conference series:

Abstract

Web databases are now pervasive. Query result pages are dynamically generated from these databases in response to user-submitted queries. A query result page contains a number of data records, each of which consists of data items and their labels. In this paper, we focus on the data alignment problem, in which individual data items and labels from different data records on a query page are aligned into separate columns, each representing a group of semantically similar data items or labels from each of these data records. We present a new approach to the data alignment problem, in which learning classifiers are trained using supervised learning to align data items and labels. Previous approaches to this problem have relied on heuristics and manually-crafted rules, which are difficult to be adapted to new page layouts and designs. In contrast we are motivated to develop learning classifiers which can be easily adapted. We have implemented the proposed learning classifier-based approach in a software prototype, rAligner, and our experimental results have shown that the approach is highly effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, N., Hong, J.: Visually extracting data records from query result pages. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) APWeb 2013. LNCS, vol. 7808, pp. 392–403. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with lixto. The VLDB Journal, 119–128 (2001)

    Google Scholar 

  3. Dalvi, N., Kumar, R., Soliman, M.: Automatic wrappers for large scale web extraction. Proc. VLDB Endow. 4(4), 219–230 (2011)

    Google Scholar 

  4. Derouiche, N., Cautis, B., Abdessalem, T.: Automatic extraction of structured web data with domain knowledge. In: ICDE, Washington, DC, USA, pp. 726–737 (2012)

    Google Scholar 

  5. Furche, T., Gottlob, G., Grasso, G., Orsi, G., Schallhart, C., Wang, C.: Little knowledge rules the web: Domain-centric result page extraction. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 61–76. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD 11(1), 10–18 (2009)

    Article  Google Scholar 

  7. Kushmerick, N.: Wrapper induction for information extraction. PhD thesis (1997)

    Google Scholar 

  8. Liu, W., Meng, X., Meng, W.: Vide: A vision-based approach for deep web data extraction. IEEE Transactions on Knowledge and Data Engineering 22, 447–460 (2010)

    Article  Google Scholar 

  9. Lu, Y., He, H., Meng, W., Zhao, H., Yu, C.: Annotating structured data of the deep web. In: 23rd Conf. on Data Engineering, pp. 376–385. Society Press (2007)

    Google Scholar 

  10. Simon, K., Lausen, G.: Viper: augmenting automatic information extraction with visual perceptions. In: CIKM Conference, New York, NY, USA, pp. 381–388 (2005)

    Google Scholar 

  11. Singhal, A.: Modern information retrieval: a brief overview. A bulletin of the IEEE Computer Society Technical Committee on Data Engineering 24 (2001)

    Google Scholar 

  12. Wang, J., Lochovsky, F.H.: Data extraction and label assignment for web databases. In: WWW Conference, New York, NY, USA, pp. 187–196 (2003)

    Google Scholar 

  13. Yamada, Y., Craswell, N., Nakatoh, T., Hirokawa, S.: Testbed for information extraction from deep web. In: WWW Conference, New York, pp. 346–347 (2004)

    Google Scholar 

  14. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: WWW Conference, New York, NY, USA, pp. 76–85 (2005)

    Google Scholar 

  15. Zhao, H., Meng, W., Wu, Z., Raghavan, Yu, C.: Fully automatic wrapper generation for search engines. In: WWW Conference, pp. 66–75 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anderson, N., Hong, J. (2013). A Learning Classifier-Based Approach to Aligning Data Items and Labels. In: Gottlob, G., Grasso, G., Olteanu, D., Schallhart, C. (eds) Big Data. BNCOD 2013. Lecture Notes in Computer Science, vol 7968. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39467-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39467-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39466-9

  • Online ISBN: 978-3-642-39467-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics