Abstract
In this paper novel 2D-hand tracking algorithms used in a system for hand gesture interaction are presented. New types of head-mounted Augmented-Reality devices offer the possibility to visualize digital content in the user’s field of view. To interact with these head-mounted devices hand gestures are an intuitive modality. Generally, the recognition of hand gestures consists of two main steps: The first one is hand tracking and the second step gesture recognition. This paper concentrates on the first step: Hand tracking. Due to the wearing comfort of the glasses-like systems these only use a single camera to capture the field of view of the user. Therefore new algorithms for hand tracking without depth data are presented and compared to state-of-the-art algorithms by utilizing a thorough evaluation methodology for comparing trajectories.
Chapter PDF
Similar content being viewed by others
References
Appenrodt, J., Al-Hamadi, A., Elmezain, M., Michaelis, B.: Data gathering for gesture recognition systems based on mono color-, stereo color- and thermal cameras. In: Lee, Y.-h., Kim, T.-h., Fang, W.-c., Ślęzak, D. (eds.) FGIT 2009. LNCS, vol. 5899, pp. 78–86. Springer, Heidelberg (2009)
Bader, T., Räpple, R., Beyerer, J.: Fast invariant contour-based classification of hand symbols for hci. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 689–696. Springer, Heidelberg (2009)
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92, 1–31 (2011)
Bradski, G.R.: Real time face and object tracking as a component of a perceptual user interface. In: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision (WACV 1998). IEEE Computer Society, Washington, DC (1998)
Damala, A., Stojanovic, N., Schuchert, T., Moragues, J., Cabrera, A., Gilleade, K.: Adaptive augmented reality for cultural heritage: Artsense project. In: Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F., Caffo, R. (eds.) EuroMed 2012. LNCS, vol. 7616, pp. 746–755. Springer, Heidelberg (2012)
Isard, M., Blake, A.: Condensationconditional density propagation for visual tracking. International Journal of Computer Vision 29, 5–28 (1998)
Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. International Journal of Computer Vision, 274–280 (1999)
Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition 40(3), 1106–1122 (2007)
Kölsch, M., Turk, M.: Fast 2d hand tracking with flocks of features and multi-cue integration. In: CVPRW 2004 Conference on Computer Vision and Pattern Recognition Workshop, p. 158 (June 2004)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI 1981, vol. 2, pp. 674–679. Morgan Kaufmann Publishers Inc., San Francisco (1981)
Mistry, P., Maes, P.: Sixthsense: a wearable gestural interface. In: ACM SIGGRAPH ASIA 2009 Sketches, pp. 11:1–11:1. ACM, New York (2009)
Needham, C.J., Boyle, R.D.: Performance evaluation metrics and statistics for positional tracker evaluation. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 278–289. Springer, Heidelberg (2003)
Oikonomidis, I.: Tracking the articulated motion of two strongly interacting hands. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012, pp. 1862–1869. IEEE Computer Society, Washington, DC (2012)
Phung, S., Bouzerdoum, A.S., Chai, D.S.: Skin segmentation using color pixel classification: analysis and comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(1), 148–154 (2005)
Pisharady, P., Vadakkepat, P., Loh, A.: Attention based detection and recognition of hand postures against complex backgrounds. International Journal of Computer Vision 101, 403–419 (2013)
Prisacariu, V., Reid, I.: Robust 3d hand tracking for human computer interaction. In: 2011 IEEE International Conference on Automatic Face Gesture Recognition and Workshops (FG 2011), pp. 368–375 (March 2011)
Schuchert, T., Voth, S., Baumgarten, J.: Sensing visual attention using an interactive bidirectional hmd. In: Proceedings of the 4th Workshop on Eye Gaze in Intelligent Human Machine Interaction, Gaze-In 2012, pp. 16:1–16:3. ACM, New York (2012)
Spruyt, V., Ledda, A., Geerts, S.: Real-time multi-colourspace hand segmentation. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 3117–3120 (September 2010)
Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision (2001)
Wachs, J.P., Kölsch, M., Stern, H., Edan, Y.: Vision-based hand-gesture applications. Commun. ACM 54, 60–71 (2011)
Wang, R.Y., Popović, J.: Real-time hand-tracking with a color glove. ACM Trans. Graph. 63, 1–63 (2009)
Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA (June 2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hammer, J.H., Beyerer, J. (2013). Robust Hand Tracking in Realtime Using a Single Head-Mounted RGB Camera. In: Kurosu, M. (eds) Human-Computer Interaction. Interaction Modalities and Techniques. HCI 2013. Lecture Notes in Computer Science, vol 8007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39330-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-39330-3_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39329-7
Online ISBN: 978-3-642-39330-3
eBook Packages: Computer ScienceComputer Science (R0)