Nothing Special   »   [go: up one dir, main page]

Skip to main content

Capturing Hiproofs in HOL Light

  • Conference paper
Intelligent Computer Mathematics (CICM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7961))

Included in the following conference series:

Abstract

Hierarchical proof trees (hiproofs for short) add structure to ordinary proof trees, by allowing portions of trees to be hierarchically nested. The additional structure can be used to abstract away from details, or to label particular portions to explain their purpose.

In this paper we present two complementary methods for capturing hiproofs in HOL Light, along with a tool to produce web-based visualisations. The first method uses tactic recording, by modifying tactics to record their arguments and construct a hierarchical tree; this allows a tactic proof script to be modified. The second method uses proof recording, which extends the HOL Light kernel to record hierachical proof trees alongside theorems. This method is less invasive, but requires care to manage the size of the recorded objects. We have implemented both methods, resulting in two systems: Tactician and HipCam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. HOL light, http://www.cl.cam.ac.uk/~jrh13/hol-light

  2. Proofscape, http://proofscape.org

  3. Prooftree, http://askra.de/software/prooftree/

  4. Adams, M.: Tactician (2012), http://www.proof-technologies.com/tactician

  5. Adams, M., Aspinall, D.: Recording and refactoring HOL light tactic proofs. In: Workshop on Automated Theory eXploration (2012)

    Google Scholar 

  6. Aspinall, D., Denney, E., Lüth, C.: Tactics for hierarchical proof. Mathematics in Computer Science 3(3), 309–330 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aspinall, D., Denney, E., Lüth, C.: Querying proofs. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 92–106. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Barker-Plummer, D., Etchemendy, J.: A computational architecture for heterogeneous reasoning. Journal of Experimental & Theoretical Artificial Intelligence 19(3), 195–225 (2007)

    Article  Google Scholar 

  9. Barwise, J.: Heterogeneous reasoning. In: Mineau, G.W., Moulin, B., Sowa, J.F. (eds.) ICCS 1993. LNCS, vol. 699, pp. 64–74. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  10. Bourke, T., Daum, M., Klein, G., Kolanski, R.: Challenges and experiences in managing large-scale proofs. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 32–48. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree. Electronic Notes in Theoretical Computer Science 155 (2006)

    Google Scholar 

  12. Griffin, T.: Notational definition and top-down refinement for interactive proof development systems. PhD thesis, Cornell University (1988)

    Google Scholar 

  13. Kaliszyk, C., Wiedijk, F.: Merging procedural and declarative proof. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 203–219. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Kapur, D., Nie, X., Musser, D.: An overview of the tecton proof system. Theoretical Computer Science 133(2), 307–339 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Obua, S.: HipCam (2013), http://github.com/phlegmaticprogrammer/hipcam

  16. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Wenzel, M.: Isar - A generic interpretative approach to readable formal proof documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Whiteside, I.: Refactoring Proofs. PhD thesis, University of Edinburgh (2013)

    Google Scholar 

  19. Whiteside, I., Aspinall, D., Dixon, L., Grov, G.: Towards formal proof script refactoring. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS, vol. 6824, pp. 260–275. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Obua, S., Adams, M., Aspinall, D. (2013). Capturing Hiproofs in HOL Light. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds) Intelligent Computer Mathematics. CICM 2013. Lecture Notes in Computer Science(), vol 7961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39320-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39320-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39319-8

  • Online ISBN: 978-3-642-39320-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics