Abstract
The theory of infinite graphs was one of Erdös’s favorite topics, and it is no exaggeration to state that the major results and notions were created by him and his collaborators. As one of the few persons equally versed in finite as well as in infinite sets, upon hearing a result on finite graphs, he always eagerly checked if it has a reasonable counterpart for infinite graphs.
Research supported by the Hungarian National Research Grant OTKA K 81121.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Aharoni: König’s duality theorem for infinite bipartite graphs, Journal of London Mathematical Society, 29 (1984), 1–12.
R. Aharoni: Menger’s theorem for countable graphs, Journal of Combinatorial Theory (B), 43 (1987), 303–313.
R. Aharoni, E. Berger: Menger’s theorem for infinite graphs, Inventiones Math., 176 (2009), 1–62.
J. E. Baumgartner: Generic graph construction, Journal of Symbolic Logic, 49 (1984), 234–240.
J. E. Baumgartner, A. Hajnal: A remark on partition relations for infinite ordinals with an application to finite combinatorics, in: Logic and combinatorics, Contemporary Mathematics, 65, Amer. Math. Soc., 1987, 157–167.
J. Czipszer, P. Erdős, A. Hajnal: Some extremal problems on infinite graphs, Publ. Math. Inst. Hung. Acad.Sci., 7 (1962), 441–456.
N.G. de Bruijn, P. Erdős: A colour problem for infinite graphs and a problem in the theory of relations, Proc. Konink. Nederl. Akad. Wetensch. Amsterdam, 54 (1951), 371–373.
W. Deuber: A generalization of Ramsey’s theorem, Infinite and finite sets, (Colloq. Keszthely 1973; dedicated to P. Erdős on his 60th birthday), Vol. I. Colloq. Math. Soc. J. Bolyai, Vol. 10, North Holland, Amsterdam, 1975
W. Deuber: Partitionstheoreme für Graphen, Math. Helv., 50 (1975), 311–320.
A. Dudek, V. Rödl: On the Folkman number f(2; 3; 4), Exp. Math., 17 (2008), 63–67.
A. Dudek, V. Rödl: On the Turán properties of infinite graphs, Elect. Journal of Combinatorics, 15 (2008), R47, pp 14.
P. Erdős: Some set-theoretical properties of graphs, Revista de la Univ. Nac. de Tucumán, Ser. A. Mat. y Fis. Teór. 3 (1942), 363–367.
P. Erdős: Graph theory and probability, Canad. J. Math. 11 (1959), 34–38.
P. Erdős: Problem 8, in: Theory of graphs and its applications, Proceedings of the Symposium held in Smolenice, June 1963, Czechoslovak Acad. Sci. Prague, 1964, p. 159.
P. Erdős, F. Galvin, A. Hajnal: On set-systems having large chromatic number and not containing prescribed subsystems, Infinite and finite and sets, (Colloq. Keszthely 1973; dedicated to P. Erdős on his 60th birthday), Vol. I. Colloq. Math. Soc. J. Bolyai, Vol. 10, North Holland, Amsterdam, 1975, 425–513.
Erdős Pál, Grünwald Tibor, Weiszfeld Endre: Végtelen gráfok Euler vonalairól, Mat. Fiz. Lapok, 43 (1936), 129–141.
P. Erdős, T. Grünwald, E. Vázsonyi: Über Euler-Linien unendlicher Graphen, J. Math. Physics, 17 (1938), 59–75.
P. Erdős, A. Hajnal: On chromatic number of graphs and set-systems, Acta. Math. Hungar., 17 (1966), 61–99.
P. Erdős, A. Hajnal: On decomposition of graphs, Acta. Math. Hungar., 18 (1967), 359–377.
P. Erdős, A. Hajnal: On chromatic number of infinite graphs, in: Theory of graphs, Proc. of the Coll. held at Tihany 1966, Hungary, (ed. P. Erdős and G. Katona), Akadémiai Kiadó, Budapest-Academic Press, New York, 1968, 83–89.
P. Erdős, A. Hajnal: Unsolved problems in set theory, in: Axiomatic Set Theory (Proc. Symp. Pure Math. XIII, Part I, Univ. Calif. Los Angeles, Calif. 1967), Amer. Math. Soc., Providence, R.I., 1971, 17–48.
P. Erdős, A. Hajnal, L. Pósa: Strong embeddings of graphs into colored graphs, in: Infinite and finite sets, (Colloq. Keszthely 1973; dedicated to P. Erdős on his 60th birthday), Vol. I. Colloq. Math. Soc. J. Bolyai, Vol. 10, North Holland, Amsterdam, 1975, 585–595
P. Erdős, A. Hajnal, B. L. Rothschild: On chromatic number of graphs and setsystems, in: Cambridge School in Mathematical Logic (Cambridge, England, 1971), Lecture Notes in Mathematics, Vol. 337, Springer, Berlin, 1973, 531–538.
P. Erdős, A. Hajnal, S. Shelah: On some general properties of chromatic numbers, in: Topics in topology (Proc. Colloq. Keszthely, 1972), Colloq. Math. Soc. J. Bolyai, Vol. 8. North Holland, Amsterdam, 1974, 243–255.
P. Erdős, A. Hajnal, E. Szemerédi: On almost bipartite large chromatic graphs, Annals of Discrete Math., 12 (1982), 117–123.
P. Erdős, S. Kakutani: On non-denumerable graphs, Bull. Amer. Math. Soc. 49 (1943), 457–461.
P. Erdős, R. Rado: A construction of graphs without triangles having pre-assigned order and chromatic number, J. London Math. Soc., 35 (1960), 445–448.
J. Folkman: Graphs with monochromatic complete subgraphs in every edge coloring, SIAM Journ. of Applied Math., 18 (1970), 19–24.
M. Foreman: An ℵ1-dense ideal on ℵ2, Israel Journ. Math., 108 (1998), 253–290.
M. Foreman, R. Laver: Some downward transfer properties for ℵ2, Advances in Mathematics, 67 (1988), 230–238.
F. Galvin: Chromatic numbers of subgraphs, Periodica Math. Hung., 4 (1973), 117–119.
A. Hajnal: The chromatic number of the product of two ℵ1-chromatic graphs can be countable, Combinatorica, 5 (1985), 137–140.
A. Hajnal: Embedding finite graphs into graphs colored with infinitely many colors, Israel Journal of Math., 73 (1991), 309–319.
A. Hajnal: Paul Erdős’ set theory, in: The Mathematics of Paul Erdős, (R. Graham, J. Nešetřil, eds.), Springer, 1997, 352–393.
A. Hajnal, P. Komjáth: What must and what need not be contained in a graph of uncountable chromatic number? Combinatorica, 4 (1984), 47–52
A. Hajnal, P. Komjáth: Embedding graphs into colored graphs, Trans. Amer. Math. Soc., 307 (1988), 395–409.
A. Hajnal, P. Komjáth: Obligatory subsystems of triple systems, Acta Math. Hung., 119 (2008), 1–13.
P. Komjáth: Connectivity and chromatic number of infinite graphs, Israel Journal of Mathematics, 56 (1986), 257–266.
P. Komjáth: The colouring number, Proc. London Math. Soc., 54 (1987), 1–14.
P. Komjáth: Consistency results on infinite graphs, Israel Journal of Mathematics, 61 (1988), 285–294.
P. Komjáth: Third note on Hajnal-Máté graphs, Periodica Math. Hung., 24 (1989), 403–406.
P. Komjáth: The chromatic number of some uncountable graphs, Coll. Math. Soc. János Bolyai, 60, Sets, graphs, and numbers, Budapest (Hungary), 1991, 439–444.
P. Komjáth: Ramsey-theory and forcing extensions, Proc. Amer. Math. Soc. 121, (1994), 217–219.
P. Komjáth: Two remarks on the coloring number, Journal of Combinatorial Theory, (B), 70 (1997), 301–305.
P. Komjáth: Some remarks on obligatory subsytems of uncountably chromatic triple systems, Combinatorica, 21 (2001), 233–238.
P. Komjáth: Subgraph chromatic number, DIMACS Series in Discrete Mathematics and Computer Science, 58, 2002, 99–106.
P. Komjáth: An uncountably chromatic triple system, Acta Math. Hung., 121 (2008), 79–92.
P. Komjáth, S. Shelah: Forcing constructions for uncountably chromatic graphs, Journal of Symbolic Logic, 53 (1988), 696–707.
P. Komjáth, S. Shelah: A consistent partition theorem for infinite graphs, Acta Math. Hung., 61 (1993), 115–120.
P. Komjáth, S. Shelah: Finite subgraphs of uncountably chromatic graphs, Journal of Graph Theory, 49 (2005), 28–38.
D. Kőnig: Theorie der endlichen und unendlichen Graphen, Akademische Verlagsgesellschaft, MBG, Leipzig, 1936.
L. Lovász: Combinatorial Problems and Exercises, North-Holland, 1973.
J. Nešetřil, V. Rödl: Type theory of partition properties of graphs, in: Recent Advances in Graph Theory, (ed. M. Fiedler), Academia, Prague, 1975, 183–192.
J. Nešetřil, V. Rödl: Ramsey properties of graphs with forbidden complete subgraphs, Journ. Comb. Th., (B), 20 (1976), 243–249.
J. Nešetřil, V. Rödl: A short proof of the existence of restricted Ramsey graphs by means of a partite construction, Combinatorica, 1 (1981), 199–202.
V. Rödl: M.Sc. Thesis, Charles University, Prague, 1973.
V. Rödl: On the chromatic number of subgraphs of a given graph, Proc. Amer. Math. Soc., 64 (1977), 370–371.
S. Shelah: Infinite abelian groups, Whitehead problem, and some constructions, Israel Journal of Mathematics, 18 (1974), 243–256.
S. Shelah: Consistency of positive partition theorems for graphs and models, Set theory and applications (J. Steprāns, S. Watson, eds.), Lecture Notes in Math., 1401, 167–193.
S. Shelah: Incompactness for chromatic numbers of graphs, A tribute to P. Erdős (A. Baker, B. Bollobás, A. Hajnal, eds) Camb. Univ. Press, (1990), 361–371.
L. Soukup: On chromatic number of product of graphs, Comm. Math. Univ. Carol., 29 (1988), 1–12.
J. Spencer: Three hundred million points suffice, Journ. Comb. Th., (A), 49 (1988), 210–217.
C. Thomassen: Cycles in graphs of uncountable chromatic number, Combinatorica, 3 (1983), 133–134.
S. Todorcevic: Coloring pairs of countable ordinals, Acta Math., 159 (1987), 261–294.
S. Todorcevic: Comparing the continuum with the first two uncountable cardinals. in: Logic and Scientific Methods, (eds. M. L. Dalla Chiara et al.), Kluwer, 1997, 145–155.
S. Todorcevic: Combinatorial dichotomies in set theory, Bull. of the Symbolic Logic, 17 (2011), 1–72.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 János Bolyai Mathematical Society and Springer-Verlag
About this chapter
Cite this chapter
Komjáth, P. (2013). Erdős’s Work on Infinite Graphs. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds) Erdős Centennial. Bolyai Society Mathematical Studies, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39286-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-39286-3_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39285-6
Online ISBN: 978-3-642-39286-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)