Nothing Special   »   [go: up one dir, main page]

Skip to main content

Algorithms for Hub Label Optimization

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

We consider the problem of approximating optimal hub labelings in the context of labeling algorithms for the shortest path problem. A previous result was a O(logn) approximating for minimizing the total label size. We give an O(logn)-approximation algorithm for the maximum label size. We also give O(logn)-approximation algorithms for natural generalizations of the problem: Minimizing an ℓ p norm of the labeling and simultaneously minimizing ℓ p and ℓ q norms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical Hub Labelings for Shortest Paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: A unified approach to scheduling on unrelated parallel machines. JACM 56(5), 28–31 (2009)

    Article  MathSciNet  Google Scholar 

  4. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with applications to load balancing and machine scheduling. J. ACM 44(3), 486–504 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.-Y., Krishnan, P., Vitter, J.S.: Load balancing in the lp norm. In: FOCS, pp. 383–391 (1995)

    Google Scholar 

  6. Azar, Y., Epstein, A.: Convex programming for scheduling unrelated parallel machines. In: STOC 2005, pp. 331–337 (2005)

    Google Scholar 

  7. Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algorithms. J. Algorithms 52(2), 120–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chvátal, V.: A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations Research 4(3), 233–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-hop Labels. SIAM J. Comput. 32 (2003)

    Google Scholar 

  10. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A Fast Parametric Maximum Flow Algorithm and Applications. SIAM J. Comput. 18, 30–55 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance Labeling in Graphs. Journal of Algorithms 53, 85–112 (2004)

    Article  MATH  Google Scholar 

  14. Goldberg, A.V.: A Practical Shortest Path Algorithm with Linear Expected Time. SIAM Journal on Computing 37, 1637–1655 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kortsarz, G., Peleg, D.: Generating Sparse 2-Spanners. J.Alg. 17, 222–236 (1994)

    Article  MathSciNet  Google Scholar 

  16. Thorup, M.: Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time. JACM 46, 362–394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babenko, M., Goldberg, A.V., Gupta, A., Nagarajan, V. (2013). Algorithms for Hub Label Optimization. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics