Abstract
We consider the problem of approximating optimal hub labelings in the context of labeling algorithms for the shortest path problem. A previous result was a O(logn) approximating for minimizing the total label size. We give an O(logn)-approximation algorithm for the maximum label size. We also give O(logn)-approximation algorithms for natural generalizations of the problem: Minimizing an ℓ p norm of the labeling and simultaneously minimizing ℓ p and ℓ q norms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)
Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical Hub Labelings for Shortest Paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012)
Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: A unified approach to scheduling on unrelated parallel machines. JACM 56(5), 28–31 (2009)
Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with applications to load balancing and machine scheduling. J. ACM 44(3), 486–504 (1997)
Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.-Y., Krishnan, P., Vitter, J.S.: Load balancing in the lp norm. In: FOCS, pp. 383–391 (1995)
Azar, Y., Epstein, A.: Convex programming for scheduling unrelated parallel machines. In: STOC 2005, pp. 331–337 (2005)
Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algorithms. J. Algorithms 52(2), 120–133 (2004)
Chvátal, V.: A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations Research 4(3), 233–235 (1979)
Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-hop Labels. SIAM J. Comput. 32 (2003)
Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)
Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)
Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A Fast Parametric Maximum Flow Algorithm and Applications. SIAM J. Comput. 18, 30–55 (1989)
Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance Labeling in Graphs. Journal of Algorithms 53, 85–112 (2004)
Goldberg, A.V.: A Practical Shortest Path Algorithm with Linear Expected Time. SIAM Journal on Computing 37, 1637–1655 (2008)
Kortsarz, G., Peleg, D.: Generating Sparse 2-Spanners. J.Alg. 17, 222–236 (1994)
Thorup, M.: Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time. JACM 46, 362–394 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Babenko, M., Goldberg, A.V., Gupta, A., Nagarajan, V. (2013). Algorithms for Hub Label Optimization. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-39206-1_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39205-4
Online ISBN: 978-3-642-39206-1
eBook Packages: Computer ScienceComputer Science (R0)