Nothing Special   »   [go: up one dir, main page]

Skip to main content

Defining the Behavior of an Affective Learning Companion in the Affective Meta-tutor Project

  • Conference paper
Artificial Intelligence in Education (AIED 2013)

Abstract

Research in affective computing and educational technology has shown the potential of affective interventions to increase student’s self-concept and motivation while learning. Our project aims to investigate whether the use of affective interventions in a meta-cognitive tutor can help students achieve deeper modeling of dynamic systems by being persistent in their use of meta-cognitive strategies during and after tutoring. This article is an experience report on how we designed and implemented the affective intervention. (The meta-tutor is described in a separate paper.) We briefly describe the theories of affect underlying the design and how the agent’s affective behavior is defined and implemented. Finally, the evaluation of a detector-driven categorization of student behavior, that guides the agent’s affective interventions, against a categorization performed by human coders, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arroyo, I., Ferguson, K., Johns, J., Dragon, T., Meheranian, H., Fisher, D., et al.: Repairing disengagement with non-invasive interventions. Frontiers in Artificial Intelligence and Applications, vol. 158, p. 195 (2007)

    Google Scholar 

  2. Arroyo, I., Woolf, B.P., Cooper, D.G., Burleson, W., Muldner, K.: The Impact of Animated Pedagogical Agents on Girls’ and Boys’ Emotions, Attitudes, Behaviors and Learning. In: Proceedings of the 2011 IEEE 11th International Conference on Advanced Learning Technologies. Proceedings from ICALT 2011, Washington, DC, USA (2011)

    Google Scholar 

  3. Baker, R.S.J.d., et al.: Adapting to when students game an intelligent tutoring system. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 392–401. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Baker, R.S.J.d., Gowda, S.M., Corbett, A.T.: Towards predicting future transfer of learning. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 23–30. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Baker, R.S.J.d., Gowda, S.M., Corbett, A.T., Ocumpaugh, J.: Towards automatically detecting whether student learning is shallow. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 444–453. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Baylor, A.L., Kim, Y.: Simulating instructional roles through pedagogical agents. International Journal of Artificial Intelligence in Education 15(2), 95–115 (2005)

    Google Scholar 

  7. Bickmore, T.W., Picard, R.W.: Establishing and maintaining long-term human-computer relationships. ACM Transactions on Computer-Human Interaction (TOCHI) 12(2), 293–327 (2005)

    Article  Google Scholar 

  8. Burleson, W., Picard, R.W.: Gender-Specific Approaches to Developing Emotionally Intelligent Learning Companions. IEEE Intelligent Systems 22(4), 62–69 (2007), doi:10.1109/MIS.2007.69

    Article  Google Scholar 

  9. D’Mello, S.K., Lehman, B., Person, N.: Monitoring affect states during effortful problem solving activities. International Journal of Artificial Intelligence in Education 20(4), 361–389 (2010), doi:10.3233/JAI-2010-012

    Google Scholar 

  10. Dweck, C.: Self-Theories: Their role in motivation, personality and development. Psychology Press, Philadelphia (2000)

    Google Scholar 

  11. Girard, S., Zhang, L., Hidalgo-Pontet, Y., VanLehn, K., Burleson, W., Chavez-Echeagary, M.E., Gonzalez-Sanchez, J.: Using HCI task modeling techniques to measure how deeply students model. In: Chad Lane, H., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 766–769. Springer, Heidelberg (2013)

    Google Scholar 

  12. Gulz, A.: Benefits of Virtual Characters in Computer Based Learning Environments: Claims and Evidences. International Journal of Artificial Intelligence in Education 14(3), 313–334 (2004)

    Google Scholar 

  13. Gulz, A., Haake, M., Silvervarg, A.: Extending a teachable agent with a social conversation module – effects on student experiences and learning. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 106–114. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Hayashi, Y.: On pedagogical effects of learner-support agents in collaborative interaction. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 22–32. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Katz, S., Connelly, J., Wilson, C.: Out of the lab and into the classroom: An evaluation of reflective dialogue in Andes. In: Proceeding of the 2007 Conference on Artificial Intelligence in Education: Building Technology Rich Learning Contexts That Work, pp. 425–432 (2007)

    Google Scholar 

  16. Kim, Y., Baylor, A., Shen, E.: Pedagogical agents as learning companions: the impact of agent emotion and gender. Journal of Computer Assisted Learning 23(3), 220–234 (2007)

    Article  Google Scholar 

  17. Lehman, B., D’Mello, S., Graesser, A.: Interventions to regulate confusion during Learning. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 576–578. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Muldner, K., Burleson, W., Van de Sande, B., VanLehn, K.: An analysis of students’ gaming behaviors in an intelligent tutoring system: predictors and impacts. User Modeling and User-Adapted Interaction 21(1-2), 99m–135m (2011), doi:10.1007/s11257-010-9086-0

    Google Scholar 

  19. Rodrigo, M.M.T., Baker, R.S.J.d., Agapito, J., Nabo, J., Repalam, M.C., Reyes, S.S., San Pedro, M.O.C.Z.: The Effects of an Interactive Software Agent on Student Affective Dynamics while Using an Intelligent Tutoring System. IEEE Transactions on Affective Computing 3, 224–236 (2012), doi: http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2011.41

    Article  Google Scholar 

  20. Wang, N., Johnson, W.L., Mayer, R.E., Rizzo, P., Shaw, E., Collins, H.: The politeness effect: Pedagogical agents and learning outcomes. International Journal of Human-Computer Studies 66(2), 98–112 (2008), doi:10.1016/j.ijhcs.2007.09.003

    Article  Google Scholar 

  21. Weiner, B.: An attributional theory of achievement motivation and emotion. Psychological Review 92(4), 548 (1985)

    Article  Google Scholar 

  22. Walonoski, J.A., Heffernan, N.T.: Prevention of off-task gaming behavior in intelligent tutoring systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 722–724. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Woolf, B.P., Arroyo, I., Muldner, K., Burleson, W., Cooper, D.G., Dolan, R., Christopherson, R.M.: The Effect of Motivational Learning Companions on Low Achieving Students and Students with Disabilities. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 327–337. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Zhang, L., Burleson, W., Chavez-Echeagaray, M.E., Girard, S., Gonzalez-Sanchez, J., Hidalgo-Pontet, Y., VanLehn, K.: Evaluation of a meta-tutor for constructing models of dynamic systems. In: Chad Lane, H., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 666–669. Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Girard, S. et al. (2013). Defining the Behavior of an Affective Learning Companion in the Affective Meta-tutor Project. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds) Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science(), vol 7926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39112-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39111-8

  • Online ISBN: 978-3-642-39112-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics