Abstract
We present a method for constructing reversible circuitry for multiplying integers by arbitrary integer constants. The method is based on Mealy machines and gives circuits whose size are (in the worst case) linear in the size of the constant. This makes the method unsuitable for large constants, but gives quite compact circuits for small constants. The circuits use no garbage or ancillary lines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Axelsen, H.B., Thomsen, M.K.: Garbage-free integer multiplication by constants. In: Glück, R., Yokoyama, T. (eds.) Reversible Computation. LNCS, vol. 7581, pp. 171–182 (2012)
Burignat, S., Vermeirsch, K., De Vos, A., Thomsen, M.K.: Garbageless reversible implementation of integer linear transformations. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 160–170. Springer, Heidelberg (2013)
De Vos, A.: Reversible Computing. Wiley, Chichester (2010)
Huffman, D.A.: Canonical forms for information-lossless finite-state logical machines. IRE Transactions on Information Theory 5(5), 41–59 (1959)
Mealy, G.H.: A method for synthesizing sequential circuits. Bell System Technical Journal 34(5), 1045–1079 (1955)
Rotenberg, E., Cranch, J., Thomsen, M.K., Axelsen, H.B.: Strength of the reversible, garbage-free 2k ±1 multiplier. In: Reversible Computation 2013 (2013)
Wikipedia. Mealy machine (2012), http://en.wikipedia.org/wiki/Mealy_machine
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mogensen, T.Æ. (2013). Garbage-Free Reversible Constant Multipliers for Arbitrary Integers. In: Dueck, G.W., Miller, D.M. (eds) Reversible Computation. RC 2013. Lecture Notes in Computer Science, vol 7948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38986-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-38986-3_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38985-6
Online ISBN: 978-3-642-38986-3
eBook Packages: Computer ScienceComputer Science (R0)