Nothing Special   »   [go: up one dir, main page]

Skip to main content

Constant-Factor Optimization of Quantum Adders on 2D Quantum Architectures

  • Conference paper
Reversible Computation (RC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7948))

Included in the following conference series:

Abstract

Quantum arithmetic circuits have practical applications in various quantum algorithms. In this paper, we address quantum addition on 2-dimensional nearest-neighbor architectures based on the work presented by Choi and Van Meter (JETC 2012). To this end, we propose new circuit structures for some basic blocks in the adder, and reduce communication overhead by adding concurrency to consecutive blocks and also by parallel execution of expensive Toffoli gates. The proposed optimizations reduce total depth from \(140\sqrt n+k_1\) to \(92\sqrt n+k_2\) for constants k 1,k 2 and affect the computation fidelity considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cheung, D., Maslov, D., Severini, S.: Translation techniques between quantum circuit architectures. In: Workshop on Quant. Inf. Proc. (December 2007)

    Google Scholar 

  2. Díaz, J., Petit, J., Serna, M.J.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)

    Article  Google Scholar 

  3. Choi, B.-S., Van Meter, R.: On the effect of quantum interaction distance on quantum addition circuits. J. Emerg. Technol. Comput. Syst. 7(3), 11(1-17) (2011)

    Article  Google Scholar 

  4. Beals, R., et al.: Efficient distributed quantum computing arXiv:1207.2307v2 (2012)

    Google Scholar 

  5. Takahashi, Y., Kunihiro, N., Ohta, K.: The quantum Fourier transform on a linear nearest neighbor architecture. Quant. Inf. Comput. 7, 383–391 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Maslov, D.: Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite neighbor quantum architectures. Phys. Rev. A 76 (2007)

    Google Scholar 

  7. Fowler, A.G., Devitt, S.J., Hollenberg, L.: Implementation of Shor’s algorithm on a linear nearest neighbour qubit array. Quant. Inf. Comput. 4, 237–245 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Kutin, S.A.: Shor’s algorithm on a nearest-neighbor machine. In: Asian Conf. on Quant. Inf. Sci. (2007)

    Google Scholar 

  9. Pham, P., Svore, K.M.: A 2D nearest-neighbor quantum architecture for factoring arXiv:1207.6655 (2012)

    Google Scholar 

  10. Fowler, A.G., Hill, C.D., Hollenberg, L.C.L.: Quantum error correction on linear nearest neighbor qubit arrays. Phys. Rev. A 69, 042314.1–042314.4 (2004)

    Article  Google Scholar 

  11. Arabzadeh, M., Saheb Zamani, M., Sedighi, M., Saeedi, M.: Depth-optimized reversible circuit synthesis. Quant. Inf. Proc. 12(4), 1677–1699 (2013)

    Article  MathSciNet  Google Scholar 

  12. Möttönen, M., Vartiainen, J.J.: Decompositions of general quantum gates. In: Trends in Quant. Comput. Research, Ch. 7. NOVA Publishers, New York (2006)

    Google Scholar 

  13. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. CAD 25(6), 1000–1010 (2006)

    Google Scholar 

  14. Saeedi, M., Arabzadeh, M., Saheb Zamani, M., Sedighi, M.: Block-based quantum-logic synthesis. Quant. Inf. Comput. 11(3-4), 0262–0277 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Saeedi, M., Saheb Zamani, M., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. J. Emerg. Technol. Comput. 6(4), 13(1–26) (2010)

    Google Scholar 

  16. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quant. Inf. Proc. 10(3), 355–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quant. Inf. Comput. 11(1-2), 0142–0166 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. In: Design Autom. Conf. (2013)

    Google Scholar 

  19. Choi, B.-S., Van Meter, R.: A \(\sqrt{n}\)-depth quantum adder on the 2D NTC quantum computer architecture. J. Emerg. Technol. Comput. Syst. 8(3), 24(1-22) (2012)

    Article  Google Scholar 

  20. Szkopek, T., et al.: Threshold error penalty for fault-tolerant quantum computation with nearest neighbor communication. IEEE Trans. Nano. 5(1), 42–49 (2006)

    Article  Google Scholar 

  21. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)

    Google Scholar 

  22. Markov, I.L., Saeedi, M.: Constant-optimized quantum circuits for modular multiplication and exponentiation. Quant. Info. Comput. 12(5-6), 361–394 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Markov, I.L., Saeedi, M.: Faster quantum number factoring via circuit synthesis. Phys. Rev. A 87, 012310 (2013)

    Article  Google Scholar 

  24. Shende, V.V., Markov, I.L.: On the CNOT-cost of TOFFOLI gates. Quant. Inf. Comput. 9(5-6), 461–486 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Amy, M., Maslov, D., Mosca, M., Rötteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. CAD arXiv:1206.0758v3 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saeedi, M., Shafaei, A., Pedram, M. (2013). Constant-Factor Optimization of Quantum Adders on 2D Quantum Architectures. In: Dueck, G.W., Miller, D.M. (eds) Reversible Computation. RC 2013. Lecture Notes in Computer Science, vol 7948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38986-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38986-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38985-6

  • Online ISBN: 978-3-642-38986-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics