Nothing Special   »   [go: up one dir, main page]

Skip to main content

Local Search for String Problems: Brute Force Is Essentially Optimal

  • Conference paper
Combinatorial Pattern Matching (CPM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7922))

Included in the following conference series:

  • 1113 Accesses

Abstract

We address the problem of whether the brute-force procedure for the local improvement step in a local search algorithm can be substantially improved when applied to classical NP-hard string problems. We examine four problems in this domain: Closest String, Longest Common Subsequence, Shortest Common Supersequence, and Shortest Common Superstring. Herein, we consider arguably the most fundamental string distance measure, namely the Hamming distance, which has been applied in practical local search implementations for string problems. Our results indicate that for all four problems, the brute-force algorithm is essentially optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts, E.H.L., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wiley-Interscience (1997)

    Google Scholar 

  2. Balas, E.: New classes of efficiently solvable generalized traveling salesman problems. Ann. Oper. Res. 86, 529–558 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D.W., Kanj, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Inform. Comput. 201(2), 216–231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dörnfelder, M., Guo, J., Komusiewicz, C., Weller, M.: On the parameterized complexity of consensus clustering. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 624–633. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)

    Google Scholar 

  6. Fellows, M.R., Rosamond, F.A., Fomin, F.V., Lokshtanov, D., Saurabh, S., Villanger, Y.: Local search: Is brute-force avoidable? J. Comput. Syst. Sci. 78(3), 707–719 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Festa, P., Pardalos, P.M.: Efficient solutions for the far from most string problem. Ann. Oper. Res. 196(1), 663–682 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Fast local search algorithm for weighted feedback arc set in tournaments. In: Proc. 24th AAAI. AAAI Press (2010)

    Google Scholar 

  9. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica 37(1), 25–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, J., Hartung, S., Niedermeier, R., Suchý, O.: The parameterized complexity of local search for TSP, more refined. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 614–623. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krokhin, A., Marx, D.: On the hardness of losing weight. ACM T. Alg. 8(2), 19 (2012)

    MathSciNet  Google Scholar 

  13. Marx, D.: Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res. Lett. 36(1), 31–36 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marx, D., Schlotter, I.: Stable assignment with couples: Parameterized complexity and local search. Discr. Optim. 8(1), 25–40 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meneses, C., Oliveira, C.A.S., Pardalos, P.M.: Optimization techniques for string selection and comparison problems in genomics. IEEE Eng. Med. Bio. Mag. 24(3), 81–87 (2005)

    Article  Google Scholar 

  16. Szeider, S.: The parameterized complexity of k-flip local search for SAT and MAX SAT. Discr. Optim. 8(1), 139–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, J., Hermelin, D., Komusiewicz, C. (2013). Local Search for String Problems: Brute Force Is Essentially Optimal. In: Fischer, J., Sanders, P. (eds) Combinatorial Pattern Matching. CPM 2013. Lecture Notes in Computer Science, vol 7922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38905-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38905-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38904-7

  • Online ISBN: 978-3-642-38905-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics