Abstract
Gaussian processes offer the advantage of calculating the classification uncertainty in terms of predictive variance associated with the classification result. This is especially useful to select informative samples in active learning and to spot samples of previously unseen classes known as novelty detection. However, the Gaussian process framework suffers from high computational complexity leading to computation times too large for practical applications. Hence, we propose an approximation of the Gaussian process predictive variance leading to rigorous speedups. The complexity of both learning and testing the classification model regarding computational time and memory demand decreases by one order with respect to the number of training samples involved. The benefits of our approximations are verified in experimental evaluations for novelty detection and active learning of visual object categories on the datasets C-Pascal of Pascal VOC 2008, Caltech-256, and ImageNet.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: ICIP, pp. 513–516 (2003)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
Bodesheim, P., Rodner, E., Freytag, A., Denzler, J.: An efficient approximation for gaussian process regression. Tech. Rep. TR-FSU-INF-CV-2013-01, Computer Vision Group, Friedrich Schiller University Jena, Germany (2013), http://www.inf-cv.uni-jena.de/dbvmedia/TR_FSU_INF_CV_2013_01.pdf
Chen, X., Qi, H., Qi, L., Teo, K.L.: Smooth convex approximation to the maximum eigenvalue function. Journal of Global Optimization 30(2), 253–270 (2004)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR, pp. 248–255 (2009)
Ebert, S., Larlus, D., Schiele, B.: Extracting structures in image collections for object recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 720–733. Springer, Heidelberg (2010)
Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Rapid uncertainty computation with gaussian processes and histogram intersection kernels. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 511–524. Springer, Heidelberg (2013)
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Tech. Rep. 7694, California Institute of Technology (2007), http://authors.library.caltech.edu/7694
Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Gaussian processes for object categorization. IJCV 88(2), 169–188 (2010)
Kemmler, M., Rodner, E., Denzler, J.: One-class classification with gaussian processes. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 489–500. Springer, Heidelberg (2011)
Nickisch, H., Rasmussen, C.E.: Approximations for binary gaussian process classfication. JMLR 9, 2035–2078 (2008)
Overton, M.L.: On minimizing the maximum eigenvalue of a symmetric matrix. SIAM Journal on Matrix Analysis and Applications 9(2), 256–268 (1988)
Quinonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate gaussian process regression. JMLR 6, 1939–1959 (2005)
Rasmussen, C.E., Nickisch, H.: Gpml gaussian processes for machine learning toolbox (2010), http://mloss.org/software/view/263/
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press (2006)
Rodner, E., Freytag, A., Bodesheim, P., Denzler, J.: Large-scale gaussian process classification with flexible adaptive histogram kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 85–98. Springer, Heidelberg (2012)
Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)
Snelson, E., Ghahramani, Z.: Sparse gaussian processes using pseudo-inputs. In: NIPS, pp. 1257–1264 (2005)
Tax, D.M.J., Duin, R.P.W.: Support vector data description. Machine Learning 54(1), 45–66 (2004)
Vempati, S., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Generalized rbf feature maps for efficient detection. In: BMVC, pp. 2.1–2.11 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bodesheim, P., Freytag, A., Rodner, E., Denzler, J. (2013). Approximations of Gaussian Process Uncertainties for Visual Recognition Problems. In: Kämäräinen, JK., Koskela, M. (eds) Image Analysis. SCIA 2013. Lecture Notes in Computer Science, vol 7944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38886-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-38886-6_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38885-9
Online ISBN: 978-3-642-38886-6
eBook Packages: Computer ScienceComputer Science (R0)