Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Non-Local Bootstrap – Estimation of Uncertainty in Diffusion MRI

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

Diffusion MRI is a noninvasive imaging modality that allows for the estimation and visualization of white matter connectivity patterns in the human brain. However, due to the low signal-to-noise ratio (SNR) nature of diffusion data, deriving useful statistics from the data is adversely affected by different sources of measurement noise. This is aggravated by the fact that the sampling distribution of the statistic of interest is often complex and unknown. In situations as such, the bootstrap, due to its distribution-independent nature, is an appealing tool for the estimation of the variability of almost any statistic, without relying on complicated theoretical calculations, but purely on computer simulation. In this work, we present new bootstrap strategies for variability estimation of diffusion statistics in association with noise. In contrast to the residual bootstrap, which relies on a predetermined data model, or the repetition bootstrap, which requires repeated signal measurements, our approach, called the non-local bootstrap (NLB), is non-parametric and obviates the need for time-consuming multiple acquisitions. The key assumption of NLB is that local image structures recur in the image. We exploit this self-similarity via a multivariate non-parametric kernel regression framework for bootstrap estimation of uncertainty. Evaluation of NLB using a set of high-resolution diffusion-weighted images, with lower than usual SNR due to the small voxel size, indicates that NLB is markedly more robust to noise and results in more accurate inferences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chung, S., Lu, Y., Henry, R.G.: Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33(2), 531–541 (2006)

    Article  Google Scholar 

  3. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transaction on Medical Imaging 27, 425–441 (2008)

    Google Scholar 

  4. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  5. Davison, A., Hinkley, D.: Bootstrap Methods and their Application. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (1997)

    Google Scholar 

  6. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probablilty. Chapman and Hall (1994)

    Google Scholar 

  7. Fan, J., Gijbels, I.: Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probablilty. Chapman and Hall (1996)

    Google Scholar 

  8. Friman, O., Farnebäck, G., Westin, C.F.: A Bayesian approach for stochastic white matter tractography. IEEE Transactions on Medical Imaging 25, 965–977 (2006)

    Article  Google Scholar 

  9. Härdle, W.: Applied Nonparametric Regression. Cambridge University Press (1992)

    Google Scholar 

  10. Härdle, W., Bowman, A.W.: Bootstrapping in nonparametric regression: Local adaptive smoothing and confidence bands. Journal of the American Statistical Association 83(401), 102–110 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Härdle, W., Müller, M.: Multivariate and semiparametric kernel regression. In: Schimek, M.G. (ed.) Smoothing and Regression: Approaches, Computation, and Application. Wiley & Sons, Inc., Hoboken (2000)

    Google Scholar 

  12. Haroon, H.A., Morris, D.M., Embleton, K.V., Alexander, D.C., Parker, G.J.M.: Using the model-based residual bootstrap to quantify uncertainty in fiber orientations from Q-ball analysis. IEEE Transaction on Medical Imaging 28(4), 535–550 (2009)

    Article  Google Scholar 

  13. Jbabdi, S., Woolrich, M., Andersson, J., Behrens, T.: A Bayesian framework for global tractography. NeuroImage 37(1), 116–129 (2007)

    Article  Google Scholar 

  14. Jeurissen, B., Leemans, A., Tournier, J.D., Sijbers, J.: Can residual bootstrap reliably estimate uncertainty in fiber orientation obtained by spherical deconvolution from diffusion-weighted MRI? In: Proceedings 14th Annual Meeting of the Organization of Human Brain Mapping (2008)

    Google Scholar 

  15. Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.D., Sijbers, J.: Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Human Brain Mapping 32(3), 461–479 (2011)

    Article  Google Scholar 

  16. Johansen-Berg, H., Behrens, T.E. (eds.): Diffusion MRI — From Quantitative Measurement to In-Vivo Neuroanatomy. Elsevier (2009)

    Google Scholar 

  17. Jones, D.: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magnetic Resonance in Medicine 49(1), 7–12 (2003)

    Article  Google Scholar 

  18. Lazar, M., Alexander, A.L.: Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24(2), 524–532 (2005)

    Article  Google Scholar 

  19. Manjón, J., Carbonell-Caballero, J., Lull, J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Medical Image Analysis 12(4), 514–523 (2008)

    Article  Google Scholar 

  20. Manjón, J., Coupé, P., Martí-Bonmatí, L., Collins, D., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging 31(1), 192–203 (2010)

    Article  Google Scholar 

  21. Nadaraya, E.: On estimating regression. Theory of Probability and its Applications 9(1), 141–142 (1964)

    Article  Google Scholar 

  22. Porter, D.A., Heidemann, R.M.: High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magnetic Resonance in Medicine 62(2), 468–475 (2009)

    Article  Google Scholar 

  23. Ruppert, D., Wand, M.: Multivariate locally weighted least squares regression. The Annals of Statistics 22(3), 1346–1370 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shi, F., Yap, P.T., Gao, W., Lin, W., Gilmore, J., Shen, D.: Altered structural connectivity in neonates at genetic risk for schizophrenia: A combined study using morphological and white matter networks. NeuroImage 62(3), 1622–1633 (2012)

    Article  Google Scholar 

  25. Silverman, B.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probablilty. Chapman and Hall (1998)

    Google Scholar 

  26. Watson, G.: Smooth regression analysis. Sankhyā: The Indian Journal of Statistics Series A 26(4), 359–372 (1964)

    MATH  Google Scholar 

  27. Wee, C.Y., Yap, P.T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage 54(3), 1812–1822 (2010)

    Article  Google Scholar 

  28. Wee, C.Y., Yap, P.T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Identification of MCI individuals using structural and functional connectivity networks. NeuroImage 59(3), 2045–2056 (2012)

    Article  Google Scholar 

  29. Yap, P.T., Fan, Y., Chen, Y., Gilmore, J., Lin, W., Shen, D.: Development trends of white matter connectivity in the first years of life. PLoS ONE 6(9), e24678 (2011)

    Article  Google Scholar 

  30. Yap, P.T., Wu, G., Shen, D.: Human brain connectomics: Networks, techniques, and applications. IEEE Signal Processing Magazine 27(4), 131–134 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yap, PT., An, H., Chen, Y., Shen, D. (2013). The Non-Local Bootstrap – Estimation of Uncertainty in Diffusion MRI. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics