Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Explicit Formula for the Intersection of Two Polynomials of Regular Languages

  • Conference paper
Developments in Language Theory (DLT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7907))

Included in the following conference series:

  • 793 Accesses

Abstract

Let \(\mathcal{L}\) be a set of regular languages of A *. An \(\mathcal{L}\)-polynomial is a finite union of products of the form L 0 a 1 L 1 ⋯ a n L n , where each a i is a letter of A and each L i is a language of \(\mathcal{L}\). We give an explicit formula for computing the intersection of two \(\mathcal{L}\)-polynomials. Contrary to Arfi’s formula (1991) for the same purpose, our formula does not use complementation and only requires union, intersection and quotients. Our result also implies that if \(\mathcal{L}\) is closed under union, intersection and quotient, then its polynomial closure, its unambiguous polynomial closure and its left [right] deterministic polynomial closure are closed under the same operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arfi, M.: Opérations polynomiales et hiérarchies de concaténation. Theoret. Comput. Sci. 91, 71–84 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Branco, M.J.J.: On the Pin-Thérien expansion of idempotent monoids. Semigroup Forum 49(3), 329–334 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Branco, M.J.J.: The kernel category and variants of the concatenation product. Internat. J. Algebra Comput. 7(4), 487–509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Branco, M.J.J.: Two algebraic approaches to variants of the concatenation product. Theoret. Comput. Sci. 369(1-3), 406–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Branco, M.J.J.: Deterministic concatenation product of languages recognized by finite idempotent monoids. Semigroup Forum 74(3), 379–409 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Branco, M.J.J., Pin, J.-É.: Equations defining the polynomial closure of a lattice of regular languages. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 115–126. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Lothaire, M.: Combinatorics on words, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  8. Perrin, D., Pin, J.-E.: Infinite Words. Pure and Applied Mathematics, vol. 141, Elsevier (2004) ISBN 0-12-532111-2

    Google Scholar 

  9. Pin, J.-E.: Propriétés syntactiques du produit non ambigu. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 483–499. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  10. Pin, J.-E.: A variety theorem without complementation. Russian Mathematics (Iz. VUZ) 39, 80–90 (1995)

    MathSciNet  Google Scholar 

  11. Pin, J.-E., Straubing, H., Thérien, D.: Locally trivial categories and unambiguous concatenation. J. of Pure and Applied Algebra 52, 297–311 (1988)

    Article  MATH  Google Scholar 

  12. Pin, J.-E., Thérien, D.: The bideterministic concatenation product. Internat. J. Algebra Comput. 3, 535–555 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory Comput. Systems 30, 1–39 (1997)

    Article  MathSciNet  Google Scholar 

  14. Schützenberger, M.-P.: Une théorie algébrique du codage, in Séminaire Dubreil-Pisot, année 1955-56, Exposé No. 15, 27 février 1956, 24 pages, Inst. H. Poincaré, Paris (1956)

    Google Scholar 

  15. Schützenberger, M.-P.: Sur le produit de concaténation non ambigu. Semigroup Forum 18, 331–340 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pin, JÉ. (2013). An Explicit Formula for the Intersection of Two Polynomials of Regular Languages. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38771-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38770-8

  • Online ISBN: 978-3-642-38771-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics