Abstract
We show that the subword complexity function ρ x (n), which counts the number of distinct factors of length n of a sequence x, is k-synchronized in the sense of Carpi if x is k-automatic. As an application, we generalize recent results of Goldstein. We give analogous results for the number of distinct factors of length n that are primitive words or powers. In contrast, we show that the function that counts the number of unbordered factors of length n is not necessarily k-synchronized for k-automatic sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allouche, J.-P., Shallit, J.: The ring of k-regular sequences. Theoret. Comput. Sci. 98, 163–197 (1992)
Allouche, J.-P., Shallit, J.: The ring of k-regular sequences, II. Theoret. Comput. Sci. 307, 3–29 (2003)
Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalization. Cambridge University Press (2003)
Carpi, A., D’Alonzo, V.: On the repetitivity index of infinite words. Internat. J. Algebra Comput. 19, 145–158 (2009)
Carpi, A., D’Alonzo, V.: On factors of synchronized sequences. Theoret. Comput. Sci. 411, 3932–3937 (2010)
Carpi, A., Maggi, C.: On synchronized sequences and their separators. RAIRO Inform. Théor. App. 35, 513–524 (2001)
Cassaigne, J.: Special factors of sequences with linear subword complexity. In: Dassow, J., Rozenberg, G., Salomaa, A. (eds.) Developments in Language Theory II, pp. 25–34. World Scientific (1996)
Charlier, É., Rampersad, N., Shallit, J.: Enumeration and decidable properties of automatic sequences. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 165–179. Springer, Heidelberg (2011)
Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972)
Damanik, D.: Local symmetries in the period-doubling sequence. Disc. Appl. Math. 100, 115–121 (2000)
Dekking, F.M., Mendès France, M., van der Poorten, A.J.: Folds! Math. Intelligencer 4, 130–138, 173–181, 190–195 (1982); Erratum 5, 5 (1983)
Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16, 109–114 (1965)
Goč, D., Mousavi, H., Shallit, J.: On the number of unbordered factors. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 299–310. Springer, Heidelberg (2013)
Goldstein, I.: Asymptotic subword complexity of fixed points of group substitutions. Theoret. Comput. Sci. 410, 2084–2098 (2009)
Goldstein, I.: Subword complexity of uniform D0L words over finite groups. Theoret. Comput. Sci. 412, 5728–5743 (2011)
Lyndon, R.C., Schützenberger, M.P.: The equation a M = b N c P in a free group. Michigan Math. J. 9, 289–298 (1962)
Schaeffer, L., Shallit, J.: The critical exponent is computable for automatic sequences. Int. J. Found. Comput. Sci. 23, 1611–1626 (2012)
Shallit, J.: The critical exponent is computable for automatic sequences. In: Ambroz, P., Holub, S., Másaková, Z. (eds.) Proceedings 8th International Conference Words 2011. Elect. Proc. Theor. Comput. Sci., vol. 63, pp. 231–239 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goč, D., Schaeffer, L., Shallit, J. (2013). Subword Complexity and k-Synchronization. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-38771-5_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38770-8
Online ISBN: 978-3-642-38771-5
eBook Packages: Computer ScienceComputer Science (R0)