Abstract
Weighted automata model quantitative aspects of systems like the consumption of resources during executions. Traditionally, the weights are assumed to form the algebraic structure of a semiring, but recently also other weight computations like average have been considered. Here, we investigate quantitative context-free languages over very general weight structures incorporating all semirings, average computations, lattices. In our main result, we derive the Chomsky-Schützenberger Theorem for such quantitative context-free languages, showing that each arises as the image of the intersection of a Dyck language and a recognizable language under a suitable morphism. Moreover, we show that quantitative context-free languages are expressively equivalent to a model of weighted pushdown automata. This generalizes results previously known only for semirings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Autebert, J., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 111–174. Springer (1997)
Bar–Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase structure grammars. Z. Phonetik. Sprach. Komm. 14, 143–172 (1961)
Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs on Theoretical Computer Science, vol. 12. Springer (1988)
Birkhoff, G.: Lattice Theory. AMS (1967)
Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. ACM Transactions on Computational Logic 11(4), Article 23 (2010)
Chatterjee, K., Doyen, L., Henzinger, T.: Expressiveness and closure properties for quantitative languages. In: LICS 2009, pp. 199–208. IEEE Comp. Soc. (2009)
Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidelberg (2009)
Chatterjee, K., Velner, Y.: Mean-payoff pushdown games. In: 27th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 195–204 (2012)
Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems, pp. 118–161. North-Holland (1963)
Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-2), 69–86 (2007)
Droste, M., Meinecke, I.: Describing average- and longtime-behavior by weighted MSO logics. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 537–548. Springer, Heidelberg (2010)
Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation monoid. Intern. J. of Foundations of Comp. Science 22, 1829–1844 (2011)
Droste, M., Stüber, T., Vogler, H.: Weighted finite automata over strong bimonoids. Information Sciences 180, 156–166 (2010)
Droste, M., Vogler, H.: Weighted automata and multi-valued logics over arbitrary bounded lattices. Theoretical Computer Science 418, 14–36 (2012)
Eilenberg, S.: Automata, Languages, and Machines – Volume A. Pure and Applied Mathematics, vol. 59. Academic Press (1974)
Golan, J.S.: Semirings and their Applications. Kluwer Acad. Publ. (1999)
Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (2003)
Hulden, M.: Parsing CFGs and PCFGs with a Chomsky-Schützenberger representation. In: Vetulani, Z. (ed.) LTC 2009. LNCS, vol. 6562, pp. 151–160. Springer, Heidelberg (2011)
Kozen, D.: Automata and Computability. Springer (1997)
Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monogr. Theoret. Comput. Sci. EATCS Ser., vol. 5. Springer (1986)
Meinecke, I.: Valuations of weighted automata: Doing it in a rational way. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 309–346. Springer, Heidelberg (2011)
Okhotin, A.: Non-erasing variants of the Chomsky-Schützenberger theorem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer, Heidelberg (2012)
Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, ch. 7, pp. 257–311. Springer (2009)
Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application to interprocedural dataflow analysis. Science of Programming 58, 206–263 (2005)
Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and Monographs in Computer Science. Springer (1978)
Schützenberger, M.P.: On the definition of a family of automata. Inf. and Control 4, 245–270 (1961)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Droste, M., Vogler, H. (2013). The Chomsky-Schützenberger Theorem for Quantitative Context-Free Languages. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-38771-5_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38770-8
Online ISBN: 978-3-642-38771-5
eBook Packages: Computer ScienceComputer Science (R0)