Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tractable Connected Domination for Restricted Bipartite Graphs (Extended Abstract)

  • Conference paper
Computing and Combinatorics (COCOON 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7936))

Included in the following conference series:

Abstract

Finding a minimum connected dominating set (connected domination) is known \(\cal{NP}\)-complete for chordal bipartite graphs, but tractable for convex bipartite graphs. In this paper, connected domination is shown tractable for circular- and triad-convex bipartite graphs, by efficient reductions from these graphs to convex bipartite graphs.

Partially supported by National 973 Program of China (Grant No. 2010CB328103).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Damaschke, P., Müller, H., Kratsch, D.: Domination in Convex and Chordal Bipartite Graphs. Inf. Process. Lett. 36(5), 231–236 (1990)

    Article  MATH  Google Scholar 

  2. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)

    Google Scholar 

  3. Grover, F.: Maximum matching in a convex bipartite graph. Nav. Res. Logist. Q. 14, 313–316 (1967)

    Article  Google Scholar 

  4. Jiang, W., Liu, T., Ren, T., Xu, K.: Two Hardness Results on Feedback Vertex Sets. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 233–243. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Jiang, W., Liu, T., Wang, C., Xu, K.: Feedback vertex sets on restricted bipartite graphs. Theor. Comput. Sci. (in press, 2013), doi:10.1016/j.tcs.2012.12.021

    Google Scholar 

  6. Jiang, W., Liu, T., Xu, K.: Tractable Feedback Vertex Sets in Restricted Bipartite Graphs. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 424–434. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Liang, Y.D., Blum, N.: Circular convex bipartite graphs: Maximum matching and Hamiltonian circuits. Inf. Process. Lett. 56, 215–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Müller, H., Brandstät, A.: The NP-completeness of steiner tree and dominating set for chordal bipartite graphs. Theor. Comput. Sci. 53(2-3), 257–265 (1987)

    Article  MATH  Google Scholar 

  9. Pfaff, J., Laskar, R., Hedetniemi, S.T.: NP-completeness of total and connected domination, and irredundance for bipartite graphs. Technical Report 428, Dept. Mathematical Sciences, Clemenson Univ. (1983)

    Google Scholar 

  10. Sampathkumar, E., Walikar, H.B.: The connected domination number of a graph. Math. Phys. Sci. 13(6), 607–613 (1979)

    MathSciNet  MATH  Google Scholar 

  11. Song, Y., Liu, T., Xu, K.: Independent Domination on Tree Convex Bipartite Graphs. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) FAW-AAIM 2012. LNCS, vol. 7285, pp. 129–138. Springer, Heidelberg (2012)

    Google Scholar 

  12. Wang, C., Liu, T., Jiang, W., Xu, K.: Feedback vertex sets on tree convex bipartite graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 95–102. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, Z., Liu, T., Xu, K. (2013). Tractable Connected Domination for Restricted Bipartite Graphs (Extended Abstract). In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38768-5_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38767-8

  • Online ISBN: 978-3-642-38768-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics