Abstract
Finding a minimum connected dominating set (connected domination) is known \(\cal{NP}\)-complete for chordal bipartite graphs, but tractable for convex bipartite graphs. In this paper, connected domination is shown tractable for circular- and triad-convex bipartite graphs, by efficient reductions from these graphs to convex bipartite graphs.
Partially supported by National 973 Program of China (Grant No. 2010CB328103).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Damaschke, P., Müller, H., Kratsch, D.: Domination in Convex and Chordal Bipartite Graphs. Inf. Process. Lett. 36(5), 231–236 (1990)
Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)
Grover, F.: Maximum matching in a convex bipartite graph. Nav. Res. Logist. Q. 14, 313–316 (1967)
Jiang, W., Liu, T., Ren, T., Xu, K.: Two Hardness Results on Feedback Vertex Sets. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 233–243. Springer, Heidelberg (2011)
Jiang, W., Liu, T., Wang, C., Xu, K.: Feedback vertex sets on restricted bipartite graphs. Theor. Comput. Sci. (in press, 2013), doi:10.1016/j.tcs.2012.12.021
Jiang, W., Liu, T., Xu, K.: Tractable Feedback Vertex Sets in Restricted Bipartite Graphs. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 424–434. Springer, Heidelberg (2011)
Liang, Y.D., Blum, N.: Circular convex bipartite graphs: Maximum matching and Hamiltonian circuits. Inf. Process. Lett. 56, 215–219 (1995)
Müller, H., Brandstät, A.: The NP-completeness of steiner tree and dominating set for chordal bipartite graphs. Theor. Comput. Sci. 53(2-3), 257–265 (1987)
Pfaff, J., Laskar, R., Hedetniemi, S.T.: NP-completeness of total and connected domination, and irredundance for bipartite graphs. Technical Report 428, Dept. Mathematical Sciences, Clemenson Univ. (1983)
Sampathkumar, E., Walikar, H.B.: The connected domination number of a graph. Math. Phys. Sci. 13(6), 607–613 (1979)
Song, Y., Liu, T., Xu, K.: Independent Domination on Tree Convex Bipartite Graphs. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) FAW-AAIM 2012. LNCS, vol. 7285, pp. 129–138. Springer, Heidelberg (2012)
Wang, C., Liu, T., Jiang, W., Xu, K.: Feedback vertex sets on tree convex bipartite graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 95–102. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lu, Z., Liu, T., Xu, K. (2013). Tractable Connected Domination for Restricted Bipartite Graphs (Extended Abstract). In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_65
Download citation
DOI: https://doi.org/10.1007/978-3-642-38768-5_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38767-8
Online ISBN: 978-3-642-38768-5
eBook Packages: Computer ScienceComputer Science (R0)