Nothing Special   »   [go: up one dir, main page]

Skip to main content

Container-Based Job Management for Fair Resource Sharing

  • Conference paper
Supercomputing (ISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7905))

Included in the following conference series:

Abstract

Achieving fair resource sharing is rapidly becoming an essential requirement in cluster computing systems. Although many fair scheduling algorithms have been proposed in recent decades, controlling resource sharing among jobs on servers remains a challenging problem that, if not handled well, may result in chaotic resource contention and service-level agreement violation of jobs. To address this problem, we propose a resource container–based job management approach for fair resource sharing. In our approach, we first design and implement a general container-based job management module, providing lightweight and fine-grained resource allocation and isolation for job execution. With this module, we propose a resource-aware management scheme to enable fair resource sharing in job scheduling and dispatching. We conduct experiments by implementing the proposed module and applying the scheme on TCluster, a self-developed cluster computing system of a worldwide top Internet corporation. Results show that our approach performs well in guaranteeing fair resource sharing with negligible overhead.

This work was partially supported by NSFC 61202417, 60903116 and 61003063.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. byte-unixbench, http://code.google.com/p/byte-unixbench/

  2. Cgroup, http://www.kernel.org/doc/documentation/cgroups/cgroups.txt

  3. Geekbench, http://www.primatelabs.ca/geekbench/

  4. KVM, http://www.linux-kvm.org/

  5. Linux container, http://lxc.sourceforge.net/

  6. Linux kernel namespace, http://lxc.sourceforge.net/index.php/about/kernel-namespaces/

  7. OpenVZ, http://download.openvz.org/doc/openvz-intro.pdf

  8. Vmware, http://www.vmware.com/

  9. Hadoop fair scheduler (2010), http://hadoop.apache.org/mapreduce/docs/r0.21.0/fair_scheduler.html

  10. Banga, G., Druschel, P., Mogul, J.C.: Resource containers: A new facility for resource management in server systems. In: OSDI, pp. 45–58 (1999)

    Google Scholar 

  11. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP, pp. 164–177 (2003)

    Google Scholar 

  12. Chang, F., Ren, J., Viswanathan, R.: Optimal resource allocation in clouds. In: ICCC (2010)

    Google Scholar 

  13. Diaz, C.O., Guzek, M., Pecero, J.E., Danoy, G., Bouvry, P., Khan, S.U.: Energyaware fast scheduling heuristics in heterogeneous computing systems. In: HPCS (2011)

    Google Scholar 

  14. Gambosi, G., Postiglione, A., Talamo, M.: Algorithms for the relaxed online binpacking model. SIAM Journal on Computing 30(5), 1532–1551 (2000)

    Article  MathSciNet  Google Scholar 

  15. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dominant resource fairness: Fair allocation of multiple resource types. In: NSDI (2011)

    Google Scholar 

  16. Grit, L., Irwin, D., Marupadi, V., Shivam, P., Yumerefendi, A., Chase, J., Albrecht, J.: Harnessing virtual machine resource control for job management. In: VTDC (2007)

    Google Scholar 

  17. He, Y., Elnikety, S., Sun, H.: Tians scheduling: Using partial processing in beste ort applications. In: ICDCS (2011)

    Google Scholar 

  18. Huang, Q., Huang, T.: An optimistic job scheduling strategy based on QoS for cloud computing. In: ICISS (2010)

    Google Scholar 

  19. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.: Quincy: fair scheduling for distributed computing clusters. In: SOSP, pp. 261–276 (2009)

    Google Scholar 

  20. Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. J. ACM 32, 562–572 (1985)

    Article  MathSciNet  Google Scholar 

  21. Liu, H., Abraham, A., Hassanien, A.E.: Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm. In: FGCS (2009)

    Google Scholar 

  22. Menage, P.B.: Adding generic process containers to the linux kernel. In: OLS (2007)

    Google Scholar 

  23. Pinel, F., Pecero, J.E., Bouvry, P., Khan, S.U.: A two-phase heuristic for the scheduling of independent tasks on computational grids. In: HPCS (2011)

    Google Scholar 

  24. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Journal of Mathematics of Operations Research 34(2) (2009)

    Google Scholar 

  25. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors. In: EuroSys, pp. 275–288 (2007)

    Google Scholar 

  26. Waldspurger, C.A.: Lottery and stride scheduling: Flexible proportional-share resource management (1995)

    Google Scholar 

  27. Wang, M., Meng, X., Zhang, L.: Consolidating virtual machines with dynamic bandwidth demand in data centers. In: INFOCOM (2011)

    Google Scholar 

  28. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.: Job scheduling for multi-user mapreduce clusters. Technical Report UCB/EECS-2009-55 (2009), http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-55.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, J. et al. (2013). Container-Based Job Management for Fair Resource Sharing. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds) Supercomputing. ISC 2013. Lecture Notes in Computer Science, vol 7905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38750-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38750-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38749-4

  • Online ISBN: 978-3-642-38750-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics