Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parameter Identification of RVM Runoff Forecasting Model Based on Improved Particle Swarm Optimization

  • Conference paper
Advances in Swarm Intelligence (ICSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7928))

Included in the following conference series:

Abstract

Runoff forecasting which subjects to model pattern and parameter optimization, has an important significance of reservoir scheduling and water resources management decision-makings. This paper proposed a new forecasting model coupled phase space reconstruction technology with relevance vector machine, and its model parameters is optimized by an improved PSO algorithm. The monthly runoff time series from 1953 to 2003 at Manwan station is selected as an example. The results show that the improved PSO has efficient optimization performance and the proposed forecasting model could obtain higher prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shi, Y.Z., Zhou, H.C.: Research on monthly flow uncertain reasoning model based on cloud theory. Sci. China Tech. Sci. 53, 2408–2413 (2010)

    Article  Google Scholar 

  2. Sivakumar, B., Jayawardena, A.W., Fernando, T.M.K.G.: River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology 265, 225–245 (2002)

    Article  Google Scholar 

  3. Yu, X.Y., Liong, S.Y., Babovic, V.: EC-SVM approach for real time hydrologic forecasting. Journal of Hydroinformatics 6(3), 209–223 (2004)

    MATH  Google Scholar 

  4. Tipping, M.E.: The relevance vector machine. Advances in Neural Information Processing System 12, 652–658 (2000)

    Google Scholar 

  5. Agarwal, A., Triggs, B.: 3D human pose from silhouettes by relevance vector regression. Computer Vision and Pattern Recognition 2, 882–888 (2004)

    Google Scholar 

  6. Bowd, C., Medeiros, F.A., et al.: Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements. Investigative Ophthalmology & Visual Science 46, 1322–1329 (2005)

    Article  Google Scholar 

  7. Chen, S., Gunn, S.R., Harris, C.J.: The relevance vector machine technique for channel equalization application. IEEE Trans on Neural Networks 12(6), 1529–1532 (2002)

    Article  Google Scholar 

  8. Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  9. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc IEEE Conf. on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)

    Google Scholar 

  10. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73. IEEE Press (1998)

    Google Scholar 

  11. Clerc, M., Kennedy, J.: The Particle Swarm: Explosion, Stability, and Convergence in a Multi-dimensional Complex Space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

  12. Eberhart, R.C., Shi, Y.: Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 84–88 (2000)

    Google Scholar 

  13. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, H.M., Xie, K., Ren, C., et al.: A Novel Particle Swarm Optimization with Stochastic Stagnation. Journal of Sichuan University (Engineering Science Edtion) 38(4), 118–121 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, Y., Liu, H., Fan, M., Huang, J. (2013). Parameter Identification of RVM Runoff Forecasting Model Based on Improved Particle Swarm Optimization. In: Tan, Y., Shi, Y., Mo, H. (eds) Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, vol 7928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38703-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38703-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38702-9

  • Online ISBN: 978-3-642-38703-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics