Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modified Merge Sort Algorithm for Large Scale Data Sets

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7895))

Included in the following conference series:

Abstract

Sorting algorithms find their application in many fields. One of their main uses is to organize databases. Classical applications of sorting algorithms often can not cope satisfactorily with large data sets or with unfavorable poses of sorted strings. Typically, in such situations, we try to use other methods or apply sorting process to reshuffled input data. Unfortunately, this approach complicates sorting process and often results in significant prolongation of the time. In this paper, the authors examined an algorithm dedicated to the problem of sorting large scale data sets. In the literature, there are no studies of such examples. These studies will allow to describe the properties of sorting methods for large scale data sets. Performed tests have shown superior performance of the examined algorithm, especially for large scale data sets. Changes sped up sorting of data with any arrangement of the input elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, I.A., Hopcroft, J., Ullman, J.: The design and analysis of computer algorithms. Addison-Wesley Publishing Company, USA (1975)

    Google Scholar 

  2. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha, M.: A comparison of sorting algorithms for the connection machine CM-2. In: Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 1991), Hilton Head, South Carolina, pp. 3–16 (July 1991)

    Google Scholar 

  3. Cole, R.: Parallel merge sort. SIAM J. Comput. 17, 770–785 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. The MIT Press and McGraw-Hill Book Company, Cambridge (2001)

    MATH  Google Scholar 

  5. Crescenzi, P., Grossi, R., Italiano, G.F.: Search data structures for skewed strings. Experimental and Efficient Algorithms, Second International Workshop, WEA 2003, Ascona, Switzerland. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 81–96. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Dlekmann, R., Gehring, J., Luling, R., Monien, B., Nubel, M., Wanka, R.: Sorting large data sets on a massively parallel system. In: Proceedings of the 6th Symposium on Parallel and Distributed Processing, pp. 2–9. IEEE, Los Alamitos (1994)

    Google Scholar 

  7. Estivill-Castro, V., Wood, D.: A Survey of Adaptive Sorting Algorithms. Computing Surveys 4(24), 441–475 (1992)

    Article  Google Scholar 

  8. Gedigaa, G., Duntschb, I.: Approximation quality for sorting rules. Computational Statistics & Data Analysis 40, 499–526 (2002)

    Article  MathSciNet  Google Scholar 

  9. Helman, D.R., Bader, D.A., JaJa, J.: A Randomized Parallel Sorting Algorithm with an Experimental Study. Parllel and Dirtributed Computing 1(52), l-23 (1998)

    Google Scholar 

  10. Jeon, M.S., Kim, D.S.: Parallel Merge Sort with Load Balancing. International Journal of Parallel Programming 1(31), 21–33 (2003)

    Article  Google Scholar 

  11. Kruse, R.L., Ryba, A.J.: Data Structures and Program Design in C++, 2nd edn. Pearson Education (1999)

    Google Scholar 

  12. Knuth, D.E.: Sorting and Searching, 2nd edn. The Art of Computer Programming, vol. 3. Addison-Wesley, Reading (1998)

    Google Scholar 

  13. Larriba-Pey, J.: An Analysis of Superscalar Sorting Algorithms on an R8000 Processor. In: Intl. Conf. of the Chilean Computing Society, Chile, pp. 125–134 (1997)

    Google Scholar 

  14. LaMarca, A., Ladner, R.E.: The influence of caches on the performance of sorting. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, January 5-7, pp. 370–379 (1997)

    Google Scholar 

  15. LaMarca, A., Ladner, R.E.: The Influence of Caches on the Performance of Sorting. In: Proc. Eighth Ann. ACM-SIAM Symp. Discrete Algorithms (1997)

    Google Scholar 

  16. Larson, P.: External Sorting: Run Formation Revisited. IEEE Transactionson Knowledge and Data Engineering 15(4), 961–972 (2003)

    Article  Google Scholar 

  17. Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. Journal of Parallel and Distributed Computing 4(14), 361–372

    Google Scholar 

  18. Pai, V.S., Varman, P.J.: Prefetching with Multiple Disks for External Mergesort: Simulation and Analysis. In: Proc. Int. Conf. Data Eng., pp. 273–282 (1992)

    Google Scholar 

  19. Raghaven, P.: Lecture Notes on Randomized Algorithms, tech. report, IBM Research Division, Yorktown Heights, New York (1990)

    Google Scholar 

  20. Rashid, L., Hassanein, W.M., Hammad, M.A.: Analyzing and Enhancing the Parallel Sort Operation on Multithreaded Architectures. J. Supercomputer (2009)

    Google Scholar 

  21. Salzberg, B.: Merging Sorted Runs Using Large Main Memory. Acta Informatica 27(3), 195–215 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sinha, R., Zobel, J.: Cache-conscious sorting of large sets of strings with dynamic tries. J. Exp. Algorithmics 9, 1–5 (2004)

    MathSciNet  Google Scholar 

  23. Trimananda, R., Haryanto, C.Y.: A Parallel Implementation of Hybridized Merge-Quicksort Algorithm on MPICH. In: 2010 International Conference on Distributed Framework for Multimedia Applications (DFmA)

    Google Scholar 

  24. Weiss, M.A.: Data Structure & Algorithm Analysis in C++, 2nd edn. Addison-Wesley Longman (1999)

    Google Scholar 

  25. Zhang, W., Larson, P.A.: Dynamic Memory Adjustment for External Mergesort. In: Proc. Very Large Data Bases Conf., pp. 376–385 (1997)

    Google Scholar 

  26. Zhang, W., Larson, P.A.: Buffering and Read-Ahead Strategies for External Mergesort. In: Proc. Very Large Data Bases Conf., pp. 523–533 (1998)

    Google Scholar 

  27. Zheng, L., Larson, P.A.: Speeding Up External Mergesort. IEEE Trans. Knowledge and Data Eng. 8(2), 322–332 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woźniak, M., Marszałek, Z., Gabryel, M., Nowicki, R.K. (2013). Modified Merge Sort Algorithm for Large Scale Data Sets. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38610-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38610-7_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38609-1

  • Online ISBN: 978-3-642-38610-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics